Series temporales

Análisis de series temporales en R

Grado en Estadística Aplicada • Javier Álvarez Liébana

¡Bienvenidos a la nave del tiempo!

Dejad vuestras regresiones a un lado

¡Buenas!

Correo: . Despacho: 722 (3ª planta). Tutorías (curso 2024-2025): …

  • Javier Álvarez Liébana, de Carabanchel (Bajo).

  • Licenciado en Matemáticas (UCM). Doctorado en estadística (UGR).

  • Encargado de la visualización y análisis de datos covid del Principado de Asturias (2021-2022).

  • Miembro de la Sociedad Española de Estadística e IO y la Real Sociedad Matemática Española.

Actualmente, investigador y docente en la Facultad de Estadística de la UCM. Divulgando por Twitter e Instagram

Objetivos

  • Entender el concepto de serie temporal y sus diferencias con la regresión → lo que te equivocaste ayer influye en lo que te equivocarás hoy

  • Entender conceptos teóricos básicos de procesos estocásticos

  • Aprender a manejar paquetes estadísticos de R de series temporales → la aplicabilidad de la teoría será tu valor en el futuro

  • Introducirnos en la metodología Box-Jenkins → los datos deben ser estacionarios

Evaluación

  • Evaluación continua: 3 entregas individuales a ordenador en clase (20%-25%-35%), y una entrega individual teórica a papel en clase (20%). Asistencia no obligatoria pero se valorará positivamente la participación.
  • Examen final: la nota ponderará en función de tu evaluación continua.

    • Más de un 7 -> podrás decidir peso del final entre un 0% y un 100% de la nota (es decir, no será obligatorio el final).
    • Entre 6 y 7 -> podrás decidir peso del final entre un 35% y un 100%.
    • Entre 5 y 6 -> podrás decidir peso del final entre un 60% y un 100%.
    • Entre 3.5 y 5 -> podrás decidir peso del final entre un 80% y un 100%.
    • Por debajo del 3.5 -> el peso del final será del 100%

Si tienes que hacer el examen final, será obligatorio presentarse y sacar más de un 3 para aprobar.

Planificación entregas

  • Entrega I (20%): 8 de octubre (120 minutos).

  • Entrega II (25%): … (120 minutos).

  • Entrega III (35%): … (120 minutos).

  • Entrega teórica (20%): … (120 minutos).

 

  • Examen final: 14 de enero (10:00-13:30)

 

Se podrán modificar las fechas por saturación con otras asignaturas siempre y cuando el/la delegado/a lo solicite con más de 7 días de antelación.

Planificación

CLASE SEMANA FECHAS TOPIC EJ. WORKBOOK ENTREGA
1-2 S1 9-12 sep Repaso de R 💻 💻 💻 💻 💻 🐣 🐣 🐣
3 S1 12 sep Repaso de estadística 💻 💻 🐣

Materiales

 

Datasets

 

  • airquality del paquete {datasets} (ya instalado por defecto): medidas diarias (153 observaciones) de la calidad del aire en Nueva York, de mayo a septiembre de 1973. Se midieron 6 variables: ozono, radiación solar, viento, temperatura, mes y día.

Clases 1 y 2: objetivos y repaso R

Objetivos. Repaso de R

¿Qué es una serie temporal?

Durante la carrera es probable que hayas tratado con multitud de datos pero hay uno muy especial que trataremos en esta asignatura de manera diferente: las series temporales.

Vamos a cargar el fichero retiro_temp.csv donde tenemos los datos de temperaturas diarios (AEMET) desde 1980 hasta 2024 de la estación instalada en El Retiro (Madrid).

Código
library(readr) # de tidyverse
# en tidyverse, read_ en lugar de read.
# tendremos datos en formato tibble en lugar de data.frame
retiro <- read_csv(file = "./datos/retiro_temp.csv")
retiro
# A tibble: 16,314 × 8
   fecha      id_station nombre         provincia altitud  tmed  tmin  tmax
   <date>          <dbl> <chr>          <chr>       <dbl> <dbl> <dbl> <dbl>
 1 2000-01-01       3195 MADRID, RETIRO MADRID        667   5.4   0.3  10.4
 2 2000-01-02       3195 MADRID, RETIRO MADRID        667   5     0.3   9.6
 3 2000-01-03       3195 MADRID, RETIRO MADRID        667   3.5   0.1   6.9
 4 2000-01-04       3195 MADRID, RETIRO MADRID        667   4.3   1.4   7.2
 5 2000-01-05       3195 MADRID, RETIRO MADRID        667   0.6  -0.4   1.6
 6 2000-01-06       3195 MADRID, RETIRO MADRID        667   3.8  -1.1   8.8
 7 2000-01-07       3195 MADRID, RETIRO MADRID        667   6.2   0.6  11.7
 8 2000-01-08       3195 MADRID, RETIRO MADRID        667   5.4  -0.1  11  
 9 2000-01-09       3195 MADRID, RETIRO MADRID        667   5.5   3     8  
10 2000-01-10       3195 MADRID, RETIRO MADRID        667   4.8   1.8   7.8
# ℹ 16,304 more rows

¿Qué es una serie temporal?

¿Qué analizar de estos datos?

Podemos por ejemplo visualizar un boxplot de las temperaturas medias de cada día durante estos últimos 44 años…

Código
library(tidyverse)
ggplot(retiro) +
  geom_boxplot(aes(y = tmed)) +
  scale_y_continuous(labels =
                       scales::label_number(suffix = "ºC")) +
  theme_minimal() +
  labs(title = "Temperatura desde 1980 hasta 2024",
       x = "Cuatrimestre", y = "Temperatura media diaria")

¿Qué es una serie temporal?

… la densidad de la temperatura durante todo ese tiempo…

Código
ggplot(retiro) +
  geom_density(aes(x = tmed)) +
  scale_x_continuous(labels =
                       scales::label_number(suffix = "ºC")) +
  theme_minimal() +
  labs(title = "Temperatura desde 1980 hasta 2024",
       x = "Temperatura media diaria")

¿Qué es una serie temporal?

… pero también podríamos querer relacionar la temperatura media con el mes (por ejemplo con una regresión)…

Código
ggplot(retiro |> 
         mutate(mes = as_factor(lubridate::month(fecha))) |> 
         summarise(mean_temp = mean(tmed, na.rm = TRUE),
                   .by = "mes")) +
  geom_col(aes(x = mes, y = mean_temp)) +
  theme_minimal() +
  labs(title = "Temperatura media por mes",
       x = "Mes", y = "ºC (media)")

¿Qué es una serie temporal?

… o analizar cómo la temperatura media va incrementándose en cada década

Código
ggplot(retiro |> 
         mutate(periodo =
                  if_else(fecha < as_date("1990-01-01"),
                          "1980-1990",
                          if_else(fecha < as_date("2000-01-01"),
                                  "1990-2000",
                                  if_else(fecha < as_date("2010-01-01"),
                                          "2000-2010",
                                          if_else(fecha < as_date("2020-01-01"),
                                          "2010-2020", "después de 2020")))))) +
  geom_boxplot(aes(x = periodo, y = tmed)) +
  theme_minimal() +
  labs(title = "Temperatura media según periodo",
       x = "periodo", y = "ºC (media)")

¿Qué es una serie temporal?

En todos ejemplos anteriores hemos analizado una variable continua (temperatura) en función de una variable discreta o de grupo (periodo, década, etc).

 

¿Pero y si queremos relacionarla con una variable temporal “continua” como es la propia fecha?

¿Qué es una serie temporal?

Código
ggplot(retiro) +
  geom_line(aes(x = fecha, y = tmed), linewidth = 0.3, alpha = 0.7) +
  theme_minimal() +
  labs(title = "Temperatura media como SERIE TEMPORAL",
       x = "t (fecha)", y = "ºC (media)")

¿Qué es una serie temporal?

Fíjate bien…¿qué elementos detectas?

Código
ggplot(retiro) +
  geom_line(aes(x = fecha, y = tmed), linewidth = 0.3, alpha = 0.7) +
  theme_minimal() +
  labs(title = "Temperatura media como SERIE TEMPORAL",
       x = "t (fecha)", y = "ºC (media)")

¿Qué es una serie temporal?

  • Tendencia: lo que ajustarías con un modelo clásico (por ejemplo, una regresión lineal) y representa el comportamiento global de la serie, algo así como un nivel base respecto al que la serie oscila.

(en nuestro caso: la temperatura global aumenta con el paso de los años)

Código
ggplot(retiro, aes(x = fecha, y = tmed)) +
  geom_line(linewidth = 0.3, alpha = 0.7) +
  geom_smooth(method = "lm", se = FALSE) +
  theme_minimal() +
  labs(title = "Temperatura media como SERIE TEMPORAL",
       x = "t (fecha)", y = "ºC (media)")

¿Qué es una serie temporal?

  • Estacionalidad: al margen de esa tendencia general, si hacemos zoom, en muchas series podemos observar un patrón que se repite cada x unidades temporales. En el caso de la temperatura, hay un patrón anual: diciembre hace más frío que en agosto.
Código
ggplot(retiro |> 
         filter(between(fecha, as_date("2020-01-01"), as_date("2023-12-31"))),
                aes(x = fecha, y = tmed)) +
  geom_line(linewidth = 0.3, alpha = 0.7) +
  geom_smooth(method = "loess") +
  theme_minimal() +
  labs(title = "Temperatura media diaria de 2020 a 2023",
       x = "t (fecha)", y = "ºC (media)")

¿Qué es una serie temporal?

  • Atípicos: como sucede siempre en estadística será importantísimo analizar y tratar los datos atípicos muy alejados de lo esperado. Por ejemplo, en nuestro caso, Filomena.
Código
ggplot(retiro |> 
         filter(between(fecha, as_date("2020-01-01"), as_date("2023-12-31"))) |>
         mutate(filomena = between(fecha, as_date("2020-12-25"), as_date("2021-01-22"))),
                aes(x = fecha, y = tmed)) +
  geom_line(linewidth = 0.3, alpha = 0.7) +
  geom_point(aes(alpha = filomena), color = "#991545") +
  scale_alpha_manual(values = c(0, 1)) +
  guides(alpha = "none") +
  theme_minimal() +
  labs(title = "Temperatura media diaria de 2020 a 2023",
       x = "t (fecha)", y = "ºC (media)")

¿Qué es una serie temporal?

  • Intervenciones: incluso podría suceder que la serie tuviese un corte o salto en su comportamiento. Por ejemplo, imagina que de repente el aparato de medición empieza a medir +25 grados de la temperatura real.
Código
ggplot(retiro |> 
         filter(between(fecha, as_date("2020-01-01"), as_date("2023-12-31"))) |>
         mutate(tmed = if_else(fecha <= "2021-12-31", tmed, tmed + 25))) +
  geom_line(aes(x = fecha, y = tmed), linewidth = 0.3, alpha = 0.7) +
  guides(alpha = "none") +
  theme_minimal() +
  labs(title = "Temperatura media diaria de 2020 a 2023",
       subtitle = "Error de +25ºC a partir de 2022",
       x = "t (fecha)", y = "ºC (media)")

Ejemplos de series

En esta asignatura será fundamental un concepto: estacionariedad. Diremos que una serie es estacionaria si oscila de manera estable con una media y varianza constante.

Distintos objetivos

  • Análisis descriptivo
    • Visualización: ¿cómo son los datos? ¿Existe algún ausente o valor atípico?
    • ¿Se puede descomponer la serie en series más sencillas?
  • Análisis probabilístico:
    • ¿Existe un modelo teórico tal que lo que observamos sea simplemente una muestra dicho modelo probabilístico?
    • Aunque los datos sean aleatorios, ¿podemos modelizar de manera teórica alguna de sus característica?
  • Predicción
    • Conociendo su comportamiento pasado, ¿cuánto valdrá su valor mañana?
    • ¿Cuánto me estoy equivocando? ¿Cómo medir ese error?

Bloques del curso

  • Bloque I: analisis exploratorio. Descomposición y suavizado
  • Bloque II: ¿qué son los prcesos estocásticos?
  • Bloque III: metodología Box-Jenkins
  • Bloque IV: problemas (intervención, atípicos, ausentes, heterocedasticidad, …

Instalación de R

El lenguaje R será nuestra gramática y ortografía (nuestras reglas de juego)

  • Paso 1: entra en https://cran.r-project.org/ y selecciona tu sistema operativo.

  • Paso 2: para Mac basta con que hacer click en el archivo .pkg, y abrirlo una vez descargado. Para sistemas Windows, debemos clickar en install R for the first time y después en Download R for Windows. Una vez descargado, abrirlo como cualquier archivo de instalación.

  • Paso 3: abrir el ejecutable de instalación.

Cuidado

Siempre que tengas que descargar algo de CRAN (ya sea el propio R o un paquete), asegúrate de tener conexión a internet.

Instalación de R Studio

RStudio será el Word que usaremos para escribir (lo que se conoce como un IDE: entorno integrado de desarrollo).

  • Paso 1: entra la web oficial de RStudio (ahora llamado Posit) y selecciona la descarga gratuita.

  • Paso 2: selecciona el ejecutable que te aparezca acorde a tu sistema operativo.

  • Paso 3: tras descargar el ejecutable, hay que abrirlo como otro cualquier otro y dejar que termine la instalación.

Scripts (documentos .R)

Un script será el documento en el que programamos, nuestro archivo .doc (aquí con extensión .R) donde escribiremos las órdenes. Para abrir nuestro primero script, haz click en el menú en File < New File < R Script.

Cuidado

Es importante no abusar de la consola: todo lo que no escribas en un script, cuando cierres, lo habrás perdido.

Cuidado

R es case-sensitive: es sensible a mayúsculas y minúsculas por lo que x y X representa variables distintas.

Ejecutando el primer script

Ahora tenemos una cuarta ventana: la ventana donde escribiremos nuestros códigos. ¿Cómo ejecutarlo?

  1. Escribimos el código a ejecutar.
  1. Guardamos el archivo .R haciendo click en Save current document.
  1. El código no se ejecuta salvo que se lo indiquemos. Tenemos tres opciones de ejecutar un script:
  • Copiar y pegar en consola.
  • Seleccionar líneas y Ctrl+Enter
  • Activar Source on save a la derecha de guardar: no solo guarda sino que ejecuta el código completo.

Sé organizado: proyectos

De la misma manera que en el ordenador solemos trabajar de manera ordenada por carpetas, en RStudio podemos hacer lo mismo para trabajar de manera eficaz creando proyectos.

Un proyecto será una «carpeta» dentro de RStudio, de manera que nuestro directorio raíz automáticamente será la propia carpeta de proyecto (pudiendo pasar de un proyecto a otro con el menu superior derecho).

Podemos crear uno en una carpeta nueva o en una carpeta ya existente.

Buenas prácticas

  • Tip 1: asignar, evaluar y comparar no es lo mismo. Si te has fijado en R estamos usando <- para asignar valores a variables. Usaremos = para evaluar argumentos en funciones y == para saber si dos elementos son iguales.
x <- 1 # asignar
x = 1 # evaluar
x == 1 # comparar
  • Tip 2: programa como escribes. Al igual que cuando redactas en castellano, acostúmbrate a incorporar espacios y saltos de línea paranoquedarteciego (es una buena práctica y no un requisito porque R no procesa los espacios)
x <- 1 # óptimo
x<-1 # regu
x<- 1 # peor (decídete)

Buenas prácticas

  • Tip 3: no seas caótico, estandariza nombres, acostúmbrate siempre a hacerlo igual. El único requisito es que debe empezar siempre por una letra (y sin tildes). La forma más recomendable es la conocida como snake_case
variable_en_modo_snake_case
otraFormaMasDificilDeLeer
hay.gente.que.usa.esto
Incluso_Haygente.Caotica_que.NoMereceNuestraATENCION
  • Tip 4: facilita la lectura y escritura, pon márgenes. En Tools < Global Options puedes personalizar algunas opciones de RStudio. En Code < Display podemos indicarle en Show margin (no interacciona con el código).

Buenas prácticas

  • Tip 5: el tabulador es tu mejor amigo. En RStudio tenemos una herramienta maravillosa: si escribes parte del nombre de una variable o función y tabulas, RStudio te autocompleta

Buenas prácticas

  • Tip 6: ni un paréntesis soltero. Siempre que abras un paréntesis deberás cerrarlo. Para facilitar esta tarea entra en Tools < Global Options < Code < Display y activa la opción Rainbow parentheses

Buenas prácticas

  • Tip 7: fíjate en el lateral izquierdo. No solo podrás ver la línea de código por la que vas sino que, en caso de estar cometiendo un error de sintaxis, el propio RStudio te avisará.
  • Tip 8: intenta trabajar siempre por proyectos (para esta clase, crea un script clase2.R en el proyecto que creamos en la anterior clase)

 

Ver más tips en https://r4ds.had.co.nz/workflow-basics.html#whats-in-a-name

Tipos de datos

¿Existen variables más allá de los números en la ciencia de datos? Piensa por ejemplo en los datos que podrías guardar de una persona:

  • La edad o el peso será un número.
edad <- 33
  • Su nombre será una cadena de texto (conocida como string o char).
nombre <- "javi"
  • A la pregunta «¿estás matriculado en la Facultad?» la respuesta será lo que llamamos una variable lógica (TRUE si está matriculado o FALSE en otro caso).
matriculado <- TRUE
  • Su fecha de nacimiento será precisamente eso, una fecha, un tipo de variable crucial en esta asignatura

Variables de fecha

Un tipo de datos muy especial: los datos de tipo fecha.

fecha_char <- "2021-04-21"

Parece una simple cadena de texto pero debería representar un instante en el tiempo. ¿Qué debería suceder si sumamos un 1 a una fecha?

fecha_char + 1
Error in fecha_char + 1: non-numeric argument to binary operator

Las fechas NO pueden ser texto: debemos convertir la cadena de texto a fecha.

 

Para trabajar con fechas usaremos el paquete {lubridate}, que deberemos instalar antes de poder usarlo.

install.packages("lubridate")

Variables de fecha

Una vez instalado, de todos los paquetes (libros) que tenemos, le indicaremos que nos cargue ese concretamente.

library(lubridate) # instala si no lo has hecho

Para convertir a tipo fecha usaremos la función as_date() del paquete {lubridate} (por defecto en formato yyyy-mm-dd)

 

# ¡no es una fecha, es un texto!
fecha_char + 1
Error in fecha_char + 1: non-numeric argument to binary operator
class(fecha_char)
[1] "character"
fecha <- as_date("2023-03-28")
fecha + 1
[1] "2023-03-29"
class(fecha)
[1] "Date"

Variables de fecha

En as_date() el formato de fecha por defecto es yyyy-mm-dd así si la cadena de texto no se introduce de manera adecuada…

as_date("28-03-2023")
[1] NA

Para cualquier otro formato debemos especificarlo en el argumento opcional format = ... tal que %d representa días, %m meses, %Y en formato de 4 años y %y en formato de 2 años.

as_date("28-03-2023", format = "%d-%m-%Y")
[1] "2023-03-28"
as_date("28-03-23", format = "%d-%m-%y")
[1] "2023-03-28"
as_date("03-28-2023", format = "%m-%d-%Y")
[1] "2023-03-28"
as_date("28/03/2023", format = "%d/%m/%Y")
[1] "2023-03-28"

Variables de fecha

En dicho paquete tenemos funciones muy útiles para manejar fechas:

  • Con today() podemos obtener directamente la fecha actual.
today()
[1] "2024-09-28"
  • Con now() podemos obtener la fecha y hora actual
now()
[1] "2024-09-28 13:42:28 CEST"
  • Con year(), month() o day() podemos extraer el año, mes y día
fecha <- today()
year(fecha)
[1] 2024
month(fecha)
[1] 9

Resúmenes de paquetes

Amplia contenido

Tienes un resumen en pdf de los paquetes más importantes en la carpeta correspondiente en el campus

Vectores: concatenar

Cuando trabajamos con datos normalmente tendremos columnas que representan variables: llamaremos vectores a una concatenación de celdas (valores) del mismo tipo (lo que sería una columna de una tabla).

La forma más sencilla es con el comando c() (c de concatenar), y basta con introducir sus elementos entre paréntesis y separados por comas

edades <- c(32, 27, 60, 61)
edades
[1] 32 27 60 61

Consejo

Un número individual x <- 1 (o bien x <- c(1)) es en realidad un vector de longitud uno –> todo lo que sepamos hacer con un número podemos hacerlo con un vector de ellos.

💻 Tu turno

Intenta realizar los siguientes ejercicios sin mirar las soluciones

📝 Define el vector x como la concatenación de los 5 primeros números impares. Calcula la longitud del vector

Código
# Dos formas
x <- c(1, 3, 5, 7, 9)
x <- seq(1, 9, by = 2)

length(x)

📝 Accede al tercer elemento de x. Accede al último elemento (sin importar la longitud, un código que pueda ejecutarse siempre). Elimina el primer elemento.

Código
x[3]
x[length(x)]
x[-1]

📝 Obtén los elementos de x mayores que 4. Calcula el vector 1/x y guárdalo en una variable.

Código
x[x > 4]
z <- 1/x
z

📝 Crea un vector que represente los nombres de 5 personas, de los cuales uno es desconocido.

Código
nombres <- c("Javi", "Sandra", NA, "Laura", "Carlos")
nombres

📝 Encuentra del vector x de ejercicios anteriores los elementos mayores (estrictos) que 1 Y ADEMÁS menores (estrictos) que 7. Encuentra una forma de averiguar si todos los elementos son o no positivos.

Código
x[x > 1 & x < 7]
all(x > 0)

📝 Dado el vector x <- c(1, -5, 8, NA, 10, -3, 9), ¿por qué su media no devuelve un número sino lo que se muestra en el código inferior?

x <- c(1, -5, 8, NA, 10, -3, 9)
mean(x)
[1] NA

📝 Dado el vector x <- c(1, -5, 8, NA, 10, -3, 9), extrae los elementos que ocupan los lugares 1, 2, 5, 6.

Código
x <- c(1, -5, 8, NA, 10, -3, 9)
x[c(1, 2, 5, 6)]
x[-2]

📝 Dado el vector x del ejercicio anterior, ¿cuales tienen un dato ausente? Pista: las funciones is.algo() comprueban si el elemento es tipo algo (tabula)

Código
is.na(x)

📝 Define el vector x como la concatenación de los 4 primeros números pares. Calcula el número de elementos de x menores estrictamente que 5.

Código
x[x < 5] 
sum(x < 5)

📝 Calcula el vector 1/x y obtén la versión ordenada (de menor a mayor) de las dos formas posibles

Código
z <- 1/x
sort(z)
z[order(z)]

📝 Encuentra del vector x los elementos mayores (estrictos) que 1 y menores (estrictos) que 6. Encuentra una forma de averiguar si todos los elementos son o no negativos.

Código
x[x > 1 & x < 7]
all(x > 0)

Primera base de datos

Cuando analizamos datos solemos tener varias variables de cada individuo: necesitamos una «tabla» que las recopile. La opción más inmediata son las matrices: concatenación de variables del mismo tipo e igual longitud.

Imagina que tenemos estaturas y pesos de 4 personas. ¿Cómo crear un dataset con las dos variables?

La opción más habitual es usando cbind(): concatenamos (bind) vectores en forma de columnas (c)

estaturas <- c(150, 160, 170, 180)
pesos <- c(63, 70, 85, 95)
datos_matriz <- cbind(estaturas, pesos)
datos_matriz
     estaturas pesos
[1,]       150    63
[2,]       160    70
[3,]       170    85
[4,]       180    95

Primer intento: matrices

También podemos construir la matriz por filas con la función rbind() (concatenar - bind - por filas - rows), aunque lo recomendable es tener cada variable en columna e individuo en fila como luego veremos.

rbind(estaturas, pesos) # Construimos la matriz por filas
          [,1] [,2] [,3] [,4]
estaturas  150  160  170  180
pesos       63   70   85   95
  • Podemos comprobar las dimensiones con dim(), nrow() y ncol(): las matrices son un tipo de datos tabulados (organizados en filas y columnas)
dim(datos_matriz)
[1] 4 2
nrow(datos_matriz)
[1] 4
ncol(datos_matriz)
[1] 2

Segundo intento: data.frame

Las matrices tienen el mismo problema que los vectores: si juntamos datos de distinto tipo, se perturba la integridad del dato ya que los convierte (fíjate en el código inferior: las edades y los TRUE/FALSE los ha convertido a texto)

edades <- c(14, 24, NA)
soltero <- c(TRUE, NA, FALSE)
nombres <- c("javi", "laura", "lucía")
matriz <- cbind(edades, soltero, nombres)
matriz
     edades soltero nombres
[1,] "14"   "TRUE"  "javi" 
[2,] "24"   NA      "laura"
[3,] NA     "FALSE" "lucía"

De hecho al no ser números ya no podemos realizar operaciones aritméticas

matriz + 1
Error in matriz + 1: non-numeric argument to binary operator

Segundo intento: data.frame

Para poder trabajar con variables de distinto tipo tenemos en R lo que se conoce como data.frame: concatenación de variables de igual longitud pero que pueden ser de tipo distinto.

tabla <- data.frame(edades, soltero, nombres)
class(tabla)
[1] "data.frame"
tabla
  edades soltero nombres
1     14    TRUE    javi
2     24      NA   laura
3     NA   FALSE   lucía

Segundo intento: data.frame

Dado que un data.frame es ya un intento de «base de datos» las variables no son meros vectores matemáticos: tienen un significado y podemos (debemos) ponerles nombres que describan su significado

library(lubridate)
tabla <-
  data.frame("edad" = edades, "estado" = soltero, "nombre" = nombres,
             "f_nacimiento" = as_date(c("1989-09-10", "1992-04-01", "1980-11-27")))
tabla
  edad estado nombre f_nacimiento
1   14   TRUE   javi   1989-09-10
2   24     NA  laura   1992-04-01
3   NA  FALSE  lucía   1980-11-27

Intento final: tibble

Las tablas en formato data.frame tienen algunas limitaciones. La principal es que no permite la recursividad: imagina que definimos una base de datos con estaturas y pesos, y queremos una tercera variable con el IMC

data.frame("estatura" = c(1.7, 1.8, 1.6), "peso" = c(80, 75, 70),
           "IMC" = peso / (estatura^2))
Error in data.frame(estatura = c(1.7, 1.8, 1.6), peso = c(80, 75, 70), : object 'peso' not found

En adelante usaremos el formato tibble (data.frame mejorado) del paquete {tibble}

library(tibble)
datos_tb <- 
  tibble("estatura" = c(1.7, 1.8, 1.6), "peso" = c(80, 75, 70), "IMC" = peso / (estatura^2))
class(datos_tb)
[1] "tbl_df"     "tbl"        "data.frame"
datos_tb
# A tibble: 3 × 3
  estatura  peso   IMC
     <dbl> <dbl> <dbl>
1      1.7    80  27.7
2      1.8    75  23.1
3      1.6    70  27.3

Intento final: tibble

datos_tb <-
  tibble("estatura" = c(1.7, 1.8, 1.6), "peso" = c(80, 75, 70), "IMC" = peso / (estatura^2))
datos_tb
# A tibble: 3 × 3
  estatura  peso   IMC
     <dbl> <dbl> <dbl>
1      1.7    80  27.7
2      1.8    75  23.1
3      1.6    70  27.3

Las tablas en formato tibble nos permitirá una gestión más ágil, eficiente y coherente de los datos, con 4 ventajas principales:

  • Metainformación: si te fijas en la cabecera, nos dice ya automáticamente el número de filas y columnas, y el tipo de cada variable
  • Recursividad: permite definir las variables secuencialmente (como hemos visto)

Intento final: tibble

  • Consistencia: si accedes a una columna que no existe avisa con un warning
datos_tb$invent
Warning: Unknown or uninitialised column: `invent`.
NULL
  • Por filas: crear por filas (copiar y pegar de una tabla) con tribble()
tribble(~colA, ~colB,
        "a",   1,
        "b",   2)
# A tibble: 2 × 2
  colA   colB
  <chr> <dbl>
1 a         1
2 b         2

Consejo

El paquete {datapasta} nos permite copiar y pegar tablas de páginas web y documentos sencillos

Recapitulando

  • Cada celda puede ser de un tipo diverso: números, texto, fechas, valores lógicos, etc
  • Un vector es una concatenación de celdas (las futuras columnas de nuestras tablas) –> En R por defecto las operaciones se hacen elemento a elemento
  • Una matriz nos permite concatenar variables del MISMO tipo y MISMA longitud –> datos tabulados
  • Un data.frame nos permite concatenar variables de DISTINTO tipo y MISMA longitud –> usaremos tibble como una opción mejorada de base de datos

💻 Tu turno (tb/df)

Intenta realizar los siguientes ejercicios sin mirar las soluciones

📝 Carga del paquete {datasets} el conjunto de datos airquality (variables de la calidad del aire de Nueva York desde mayo hasta septiembre de 1973). ¿Es el conjunto de datos airquality de tipo tibble? En caso negativo, conviértelo a tibble (busca en la documentación del paquete en https://tibble.tidyverse.org/index.html).

Código
library(tibble)
class(datasets::airquality)
airquality_tb <- as_tibble(datasets::airquality)

📝 Una vez convertido a tibble obtén el nombre de las variables y las dimensiones del conjunto de datos. ¿Cuántas variables hay? ¿Cuántos días se han medido?

Código
names(airquality_tb)
ncol(airquality_tb)
nrow(airquality_tb)

📝 Filtra solo los datos de la quinta observación

Código
airquality_tb[Month == 8, ]

📝 Filtra solo los datos del mes de agosto. ¿Cómo indicarle que queremos solo las filas que cumplan una condición concreta? (pista: en realidad todo son vectores “formateados”)

Código
airquality_tb[Month == 8, ]

📝 Selecciona aquellos datos que no sean ni de julio ni de agosto.

Código
airquality_tb[Month != 7 & Month != 8, ]
airquality_tb[!(Month %in% c(7, 8)), ]

📝 Modifica el siguiente código para quedarte solo con las variable de ozono y temperatura (sin importar qué posición ocupen)

airquality_tb[, 3]

📝 Selecciona los datos de temperatura y viento de agosto.

Código
airquality_tb[Month == 8, c("Temp", "Wind")]

📝 Traduce a castellano el nombre de las variables.

Código
names(airquality_tb) <- c("ozono", "rad_solar", "viento", "temp", "mes", "dia") 

🐣 Caso práctico I: tibble

Del paquete {Biostatistics} usaremos el conunto de datos pinniped, que guarda los datos de peso de cuerpo y cerebro (desagregado por sexo y mono/poligamia) de 33 especies de mamíferos marinos.

Biostatistics::pinniped
                       Species Male_brain_g Female_brain_g Male_mass_Kg
1       Monachus schauinslandi        370.0             NA        173.0
2            Monachus monachus        480.0          480.0        260.0
3      Mirounga angustirostris        700.0          640.0       2275.0
4             Mirounga leonina       1431.3          898.8       3510.0
5       Leptonychotes weddelli        535.0          637.5        450.0
6            Ommatophoca rossi        425.0          530.0        153.8
7        Lobodon carcinophagus        578.2          538.8        220.5
8            Hydrurga leptonyx        765.0          660.0        324.0
9          Cystophora cristata        480.0          430.0        343.2
10         Erignathus barbatus           NA          460.0        312.5
11          Halichoerus grypus        342.5          272.5        233.0
12          Phoca groenlandica        297.5          252.5        145.0
13              Phoca fasciata        257.5          240.0         94.8
14                Phoca largha        257.5          250.0         97.0
15               Phoca caspica        165.0          160.0         70.5
16              Phoca sibirica        185.0          190.0         89.5
17               Phoca hispida        229.3          220.0         84.0
18              Phoca vitulina        362.3          265.0         97.1
19      Zalophus californianus        405.0          361.5        244.5
20          Eumetopias jubatus        747.5          575.0       1000.0
21              Otaria byronia        546.3          470.0        300.0
22            Neophoca cinerea        440.0          337.5        300.0
23          Phocarctos hookeri        417.5          370.0        364.0
24         Callorhinus ursinus        355.0          302.5        140.0
25     Arctocephalus townsendi           NA             NA        112.0
26     Arctocephalus philippii        415.0             NA        140.0
27 Arctocephalus galapagoensis        302.5          280.0         64.5
28     Arctocephalus australis        350.0          265.0         91.0
29      Arctocephalus forsteri        340.0          300.0        125.0
30       Arctocephalus gazella        360.0          320.0        155.0
31    Arctocephalus tropicalis        322.5          330.0        152.5
32      Arctocephalus pusillus        401.3          337.5        263.0
33           Odobenus rosmarus       1303.0         1340.5       1233.0
   Female_mass_Kg Mate_type
1           272.2      mono
2           275.0      mono
3           488.0      poly
4           565.7      poly
5           447.0      poly
6           164.0      mono
7           224.0      mono
8           367.0      mono
9           222.5      mono
10          326.0      mono
11          205.8      poly
12          139.0      mono
13           80.4      mono
14           71.3      mono
15           55.0      mono
16           85.0      mono
17           81.2      mono
18           85.2      mono
19           81.0      poly
20          287.5      poly
21          144.0      poly
22           78.6      poly
23          114.7      poly
24           33.3      poly
25           49.6      poly
26           48.1      poly
27           27.4      poly
28           48.5      poly
29           38.1      poly
30           45.0      poly
31           50.0      poly
32           64.1      poly
33          811.5      poly

Intenta responder a las preguntas planteadas en el workbook

Comunicar: rmd y Quarto

Una de las principales fortalezas de R es la facilidad para generar informes, libros, webs, apuntes y hasta diapositivas (este mismo material por ejemplo). Para ello instalaremos antes

  • el paquete {rmarkdown} (para generar archivos .rmd)
install.packages("rmarkdown")
  • instalar Quarto (si ya conocías R, el «nuevo» .rmd ahora como .qmd)

Comunicar: rmd y Quarto

Hasta ahora solo hemos programado en scripts (archivos .R) dentro de proyectos, pero en muchas ocasiones no trabajaremos solos y necesitaremos comunicar los resultados en diferentes formatos:

  • apuntes (para nosotros mismos)
  • diapositivas
  • web
  • informes

Para todo ello usaremos Quarto (ver más en https://ivelasq.quarto.pub/intro-to-quarto/)

Comunicar: rmd y Quarto

Los archivos de extensión .qmd (o .rmd antes) nos permitirán fácilmente combinar:

  • Markdown: lenguaje tipado que nos permite crear contenido simple (tipo wordpress, con texto, negritas, cursivas, etc) con un diseño legible.
  • Matemáticas (latex): lenguaje para escribir notación matemática como \(x^2\) o \(\sqrt{y}\) o \(\int_{a}^{b} f(x) dx\)
  • Código y salidas: podremos no solo mostrar el paso final sino el código que has ido realizando (en R, Python, C++, Julia, …), con cajitas de código llamadas CHUNKS.
  • Imágenes, gráficas, tablas, estilos (css, js), etc.

Comunicar: rmd y Quarto

La principal ventaja de realizar este tipo de material en Quarto/Rmarkdown es que, al hacerlo desde RStudio, puedes generar un informe o una presentación sin salirte del entorno de programación en el que estás trabajando

De esta forma podrás analizar los datos, resumirlos y a la vez comunicarlos con la misma herramienta.

Recientemente el equipo de RStudio desarrolló Quarto, una versión mejorada de Rmarkdown (archivos .qmd), con un formato un poco más estético y simple. Tienes toda la documentación y ejemplos en https://quarto.org/

Usos de Quarto

Imágenes obtenidas de https://ivelasq.quarto.pub/intro-to-quarto/#/working-with-the-rstudio-visual-editor

Nuestro primer informe

Vamos a crear el primer fichero rmarkdown con Quarto con extensión .qmd. Para ello solo necesitaremos hacer click en

File << New File << Quarto Document

Nuestro primer informe

Tras hacerlo nos aparecerán varias opciones de formatos de salida:

  • archivo .pdf
  • archivo .html (recomendable): documento dinámico, permite la interacción con el usuario, como una «página web».
  • archivo .doc (nada recomendable)

De momento dejaremos marcado el formato HTML que viene por defecto, y escribiremos el título de nuestro documento. Tras ello tendremos nuestro archivo .qmd (ya no es un script .R como los que hemos abierto hasta ahora).

Nuestro primer informe

Deberías tener algo similar a la captura de la imagen con dos modos de edición: Source (con código, la opción recomendada hasta que lo domines) y Visual (más parecido a un blog)

Para ejecutar TODO el documento debes clickar Render on Save y darle a guardar.

Salida de Quarto

Deberías haber obtenido una salida en html similar a esta (y se te ha generado en tu ordenador un archivo html)

Editor: source vs visual

Como se indicaba, tienes dos formas de trabajar: con código puro y algo parecido a un Notion (blog)

Imagen obtenida de https://ivelasq.quarto.pub/intro-to-quarto/#/working-with-the-rstudio-visual-editor

Nuestro primer informe

Un fichero .qmd se divide básicamente en tres partes:

  • Cabecera: la parte que tienes al inicio entre ---.

  • Texto: que podremos formatear y mejorar con negritas (escrito como negritas, con doble astérisco al inicio y final), cursivas (cursivas, con barra baja al inicio y final) o destacar nombres de funciones o variables de R. Puedes añadir ecuaciones como \(x^2\) (he escrito $x^2$, entre dólares).

  • Código R

Cabecera de un qmd

La cabecera están en formato YAML y contiene los metadatos del documento

  • title y subtitle: el título/subtítulo del documento
  • author: autor del mismo
  • format: formato de salida (podremos personalizar)
    • theme: si tienes algún archivo de estilos
    • toc: si quieres índice o no
    • toc-location: posición del índice
    • toc-title: título del índice
  • editor: si estás en modo visual o source.
---
title: "prueba"
format:
  html:
editor: visual
---

Cabecera de un qmd

La cabecera están en formato YAML y contiene los metadatos del documento

  • title y subtitle: el título/subtítulo del documento
  • author: autor del mismo
  • format: formato de salida (podremos personalizar)
    • theme: si tienes algún archivo de estilos
    • toc: si quieres índice o no
    • toc-location: posición del índice
    • toc-title: título del índice
  • editor: si estás en modo visual o source.
---
title: "prueba"
author: "javier álvarez liébana"
format:
  html:
editor: visual
---

Cabecera de un qmd

La cabecera están en formato YAML y contiene los metadatos del documento

  • title y subtitle: el título/subtítulo del documento
  • author: autor del mismo
  • format: formato de salida (podremos personalizar)
    • theme: si tienes algún archivo de estilos
    • toc: si quieres índice o no
    • toc-location: posición del índice
    • toc-title: título del índice
  • editor: si estás en modo visual o source.
---
title: "prueba"
author: "javier álvarez liébana"
format:
  html:
    style: style.css
    toc: true
editor: visual
---

Cabecera de un qmd

La cabecera están en formato YAML y contiene los metadatos del documento

  • title y subtitle: el título/subtítulo del documento
  • author: autor del mismo
  • format: formato de salida (podremos personalizar)
    • theme: si tienes algún archivo de estilos
    • toc: si quieres índice o no
    • toc-location: posición del índice
    • toc-title: título del índice
  • editor: si estás en modo visual o source.
---
title: "prueba"
author: "javier álvarez liébana"
format:
  html:
    style: style.css
    toc: true
    toc-location: left
editor: visual
---

Cabecera de un qmd

La cabecera están en formato YAML y contiene los metadatos del documento

  • title y subtitle: el título/subtítulo del documento
  • author: autor del mismo
  • format: formato de salida (podremos personalizar)
    • theme: si tienes algún archivo de estilos
    • toc: si quieres índice o no
    • toc-location: posición del índice
    • toc-title: título del índice
  • editor: si estás en modo visual o source.
---
title: "prueba"
author: "javier álvarez liébana"
format:
  html:
    style: style.css
    toc: true
    toc-location: left
    toc-title: Índice
editor: visual
---

Texto de un qmd

Respecto a la escritura solo hay una cosa importante: salvo que indiquemos lo contrario, TODO lo que vamos a escribir es texto (normal). No código R.

Vamos a empezar escribiendo una sección al inicio (# Intro y detrás por ej. la frase

Este material ha sido diseñado por el profesor Javier Álvarez Liébana, docente en la Universidad Complutense de Madrid

Además al Running Code le añadiremos una almohadilla #: las almohadillas FUERA DE CHUNKS nos servirán para crear epígrafes (secciones) en el documento

Índice de un qmd

Para que el índice capture dichas secciones modificaremos la cabecera del archivo como se observa en la imagen (puedes cambiar la localización del índice y el título si quieres para probar).

Texto en un qmd

Vamos a personalizar un poco el texto haciendo lo siguiente:

  • Vamos a añadir negrita al nombre (poniendo ** al inicio y al final).

  • Vamos añadir cursiva a la palabra material (poniendo _ al inicio y al final).

  • Vamos añadir un enlace https://www.ucm.es, asociándolo al nombre de la Universidad. Para ello el título lo ponemos entre corchetes y justo detrás el enlace entre paréntesis [«Universidad Complutense de Madrid»](https://www.ucm.es)

Código en un qmd

Para añadir código R debemos crear nuestras cajas de código llamadas chunks: altos en el camino en nuestro texto markdown donde podremos incluir código de casi cualquier lenguaje (y sus salidas).

 

Para incluir uno deberá de ir encabezado de la siguiente forma tienes un atajo Command + Option + I (Mac) o Ctrl + Shift + I (Windows)

Código en un qmd

Dentro de dicha cajita (que tiene ahora otro color en el documento) escribiremos código R como lo veníamos haciendo hasta ahora en los scripts.

Vamos por ejemplo a definir dos variables y su suma de la siguiente manera, escribiendo dicho código en nuestro .qmd (dentro de ese chunk)

# Código R
x <- 1
y <- 2
x + y
[1] 3

Etiquetando chunks

Los chunks pueden tener un nombre o etiqueta, de forma que podamos referenciarlos de nuevo para no repetir código.

Ejecutando chunks

En cada chunk aparecen dos botones:

  • botón de play: activa la ejecución y salida de ese chunk particular (lo puedes visualizar dentro de tu propio RStudio)

  • botón de rebobinar: activa la ejecución y salida de todos los chunk hasta ese (sin llegar a él)

 

Además podemos incluir código R dentro de la línea de texto (en lugar de mostrar el texto x ejecuta el código R mostrando la variable).

Personalización de chunks

Los chunks podemos personalizarlos con opciones al inicio del chunk precedido de #|:

  • #| echo: false: ejecuta código y se muestra resultado pero no visualiza código en la salida.

  • #| include: false: ejecuta código pero no muestra resultado y no visualiza código en la salida.

  • #| eval: false: no ejecuta código, no muestra resultado pero sí visualiza código en la salida.

  • #| message: false: ejecuta código pero no muestra mensajes de salida.

  • #| warning: false: ejecuta código pero no muestra mensajes de warning.

  • #| error: true: ejecuta código y permite que haya errores mostrando el mensaje de error en la salida.

Estas opciones podemos aplicarlas chunk a chunk o fijar los parámetros de forma global con knitr::opts_chunk$set() al inicio del documento (dentro de un chunk).

Personalizando chunks

Si queremos que aplique la opción a todos los chunks por defecto debemos incluirlo al final de la cabecera, como opciones de ejecución

---
title: "¡Hola!"
format: html
editor: visual
execute:
  echo: false
---

Organizando qmd

Además de texto y código podemos introducir lo siguiente:

  • Ecuaciones: puedes añadir además ecuaciones como \(x^2\) (he escrito $x^2$, la ecuación entre dólares).

  • Listas: puedes itemizar elementos poniendo *

* Paso 1: ...

* Paso 2: ...

  • Cross-references: puedes etiquetar partes del documento (la etiqueta se construye con {#nombre-seccion}) y llamarlas luego con [Sección](@nombre-seccion)

Gráficas/imágenes en qmd

Por último, también podemos añadir pies de gráficas o imágenes añadiendo #| fig-cap: "..."

Fíjate que el caption está en el margen (por ejemplo). Puedes cambiarlo introduciendo ajustes en la cabecera (todo lo relativo a figuras empieza por fig-, y puedes ver las opciones tabulando). Tienes más información en https://quarto.org/

Añadir estilos

Por último puedes añadir un tema personalizado incluyendo un archivo de estilos (archivo en formato .scss o .css). Te he dejado uno en https://github.com/dadosdelaplace/docencia-R-master-bio-2324/tree/main/material.

Importante

El archivo de estilos debe estar en la misma carpeta que el archivo .qmd

Añadir estilos

También puedes hacerlo de manera sencilla añadiendo a los textos un poco de HTML. Por ejemplo, para personalizar el color de un texto va entre corchetes y justo tras el texto, entre llaves, las opciones de estilo

Esta palabra es [roja]{style="color:red;"} ...
... y esta [verde y en negrita]{style="color:green; font-weight: bold;"}

Esta palabra es roja

… y esta verde y en negrita

Revealjs

Puedes añadir algunas «animaciones» usando lo que se conoce como Revealjs (javascript), especifcándolo en la cabecera y usando bloques de dicho lenguaje delimitados por ::: al inicio y final, y la palabra de la «herramienta» a usar. Por ejemplo {.incremental} hace una transición de los elementos.

format:
  revealjs

 

::: {.incremental}
- Me
- llamo
- Javi
:::
  • Me
  • llamo
  • Javi

Bloques de llamada

También puedes usar los bloques de llamada que por defecto son note, tip, warning, caution e important (aunque los puedes crear y personalizar). Para ello basta con usar :::{.callout-tipo} y el tipo que quieras

:::{.callout-tip}

Note that there are five types of callouts, including: 
`note`, `tip`, `warning`, `caution`, and `important`.

:::

Consejo

Recuerda que los 5 tipos son note, tip, warning, caution e important.

Peligro

Úsalos con cabeza, a veces mucho recursos estético puede marear.

Código ajeno a R

Además {reticulate} nos permite crear chunks de python dentro de un Quarto en R (ver https://quarto.org/docs/computations/python.html para crear jupyter notebooks directamente desde Quarto)

# install.packages("reticulate")
library(reticulate)

install_python("3.9.12") # Instalar python en PC sino lo tienes

# Instalar paquetes de Python
reticulate::py_install("numpy")
reticulate::py_install("matplotlib")
import numpy as np
import matplotlib.pyplot as plt
r = np.arange(0, 2, 0.05)
theta = 2 * np.pi * r
fig, ax = plt.subplots(
  subplot_kw = {'projection': 'polar'} 
)
ax.plot(theta, r)
plt.show()

Ejemplo de entrega

Vamos a realizar un pequeño simulacro antes de la entrega usando el dataset starwars del paquete {dplyr}

Ejemplo de entrega

library(dplyr)
starwars
# A tibble: 87 × 14
   name     height  mass hair_color skin_color eye_color birth_year sex   gender
   <chr>     <int> <dbl> <chr>      <chr>      <chr>          <dbl> <chr> <chr> 
 1 Luke Sk…    172    77 blond      fair       blue            19   male  mascu…
 2 C-3PO       167    75 <NA>       gold       yellow         112   none  mascu…
 3 R2-D2        96    32 <NA>       white, bl… red             33   none  mascu…
 4 Darth V…    202   136 none       white      yellow          41.9 male  mascu…
 5 Leia Or…    150    49 brown      light      brown           19   fema… femin…
 6 Owen La…    178   120 brown, gr… light      blue            52   male  mascu…
 7 Beru Wh…    165    75 brown      light      blue            47   fema… femin…
 8 R5-D4        97    32 <NA>       white, red red             NA   none  mascu…
 9 Biggs D…    183    84 black      light      brown           24   male  mascu…
10 Obi-Wan…    182    77 auburn, w… fair       blue-gray       57   male  mascu…
# ℹ 77 more rows
# ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
#   vehicles <list>, starships <list>

En él tenemos diferentes variables de los personajes de Star Wars, con características de su pelo, piel, altura, nombre, etc.

Ejemplo de entrega

Crea un documento .qmd con nombre, título, formato e índice. Cada ejercicio posterior será una subsección del documento. Ejecuta los chunks que consideres y comenta las salidas para responder a cada pregunta

Ejercicio 1. ¿Cuántos personajes hay guardados en la base de datos? ¿Cuántas características se han medido de cada uno?

Ejercicio 2. Extrae en dos variables distintas nombres y edades las variables correspondientes de la tabla. ¿De qué tipo es la variable nombre? ¿Y la variable birth_year?

Ejercicio 3. Obtén el vector de nombres de los personajes ordenados de mayores a jóvenes.

Ejemplo de entrega

Ejercicio 4. Busca ayuda de la función unique(). Úsala para saber que modalidades tiene la variable cualitativa correspondiente al color de ojos. ¿Cuántos distintos hay?

Ejercicio 5. ¿Existe ALGÚN valor ausente en la variable de color ojos?

Ejercicio 6. Calcula la media y desviación típica de las variables de estatura y peso (cuidado con los ausentes). Define un nuevo tibble con esas dos variables e incorpora una tercera variable que se llame “IMC” que calcule el índice de masa corporal. Incorpora con $ $ la fórmula usada para el IMC.

Estructuras de control

Una estructura de control se compone de una serie de comandos orientados a decidir el camino que tu código debe recorrer

  • Si se cumple la condición A, ¿qué sucede?

  • ¿Y si sucede B?

  • ¿Cómo puedo repetir una misma expresión (dependiendo de una variable)?

Si has programado antes, quizás te sea familiar las conocidas como estructuras condicionales tales como if (blabla) {...} else {...} o bucles for/while (a evitar siempre que podamos).

Estructura If

Una de las estructuras de control más famosas son las conocidas como estructuras condicionales if.

SI (IF) un conjunto de condiciones se cumple (TRUE), entonces ejecuta lo que haya dentro de las llaves

Por ejemplo, la estructura if (x == 1) { código A } lo que hará será ejecutar el código A entre llaves pero SOLO SI la condición entre paréntesis es cierta (solo si x es 1). En cualquier otro caso, no hará nada.

Por ejemplo, definamos un vector de edades de 8 personas

edad <- c(14, 17, 24, 56, 31, 20, 87, 73)
edad < 18
[1]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE

Estructura If

Nuestra estructura condicional hará lo siguiente: si existe algún menor de edad, imprimirá por pantalla un mensaje.

if (any(edad < 18)) { 
  
  print("Existe alguna persona menor de edad")
  
}
[1] "Existe alguna persona menor de edad"

Estructura If

if (any(edad < 18)) { 
  
  print("Existe alguna persona menor de edad")
  
}

En caso de que las condiciones no sean ciertas dentro de if() (FALSE), no sucede nada

if (all(edad >= 18)) { 
  
  print("Todos son mayores de edad")
  
}

No obtenemos ningún mensaje porque la condición all(edad >= 18) no es TRUE, así que no ejecuta nada.

Estructura If-else

La estructura if (condicion) { código A } puede combinarse con un else { código B }: cuando la condición no está verificada, se ejecutará el código alternativo B dentro de else { }, permitiéndonos decidir que sucede cuando se cumple y cuando no.

Por ejemplo, if (x == 1) { código A } else { código B } ejecutará A si x es igual a 1 y B en cualquier otro caso.

if (all(edad >= 18)) { 
  
  print("Todos son mayores de edad")
  
} else {
  
  print("Existe alguna persona menor de edad")
}
[1] "Existe alguna persona menor de edad"

Estructura If-else

Esta estructura if - else puede ser anidada: imagina que queremos ejecutar un código si todos son menores; si no sucede, pero todos son mayores de 16, hacer otra cosa; en cualquier otra cosa, otra acción.

if (all(edad >= 18)) { 
  
  print("Todos son mayores de edad")
  
} else if (all(edad >= 16)) {
  
  print("Hay algún menor de edad pero todos con 16 años o más")
  
} else { print("Hay alguna persona con menos de 16 años") }
[1] "Hay alguna persona con menos de 16 años"

Truco

Puedes colapsar las estructuras haciendo click en la flecha a la izquierda que aparece en tu script.

If-else vectorizado

Esta estructura condicional se puede vectorizar (en una sola línea) con if_else() (del paquete {dplyr}), cuyos argumentos son

  • la condición a evaluar
  • lo que sucede cuando se cumple y cuando no
  • un argumento opcional para cuando la condición a evaluar es NA

Vamos a etiquetar sin son mayores/menores y un “desconocido” cuando no conocemos

library(dplyr)
edad <- c(NA, edad)
if_else(edad >= 18, "mayor", "menor", missing = "desconocido")
[1] "desconocido" "menor"       "menor"       "mayor"       "mayor"      
[6] "mayor"       "mayor"       "mayor"       "mayor"      

En R base existe ifelse(): no deja especificar que hacer con los ausentes pero permite especificar distintos tipos de datos en TRUE y en FALSE.

Bucles

Aunque en la mayoría de ocasiones se pueden reemplazar por otras estructuras más eficientes y legibles, es importante conocer una de las expresiones de control más famosas: los bucles.

  • for { }: permite repetir el mismo código en un número prefijado y conocido de veces.

  • while { }: permite repetir el mismo código pero en un número indeterminado de veces (hasta que una condición deje de cumplirse).

Bucles for

Un bucle for es una estructura que permite repetir un conjunto de órdenes un número finito, prefijado y conocido de veces dado un conjunto de índices.

Vamos a definir un vector x <- c(0, -7, 1, 4) y otra variable vacía y. Tras ello definiremos un bucle for con for () { }: dentro de los paréntesis indicaremos un índice y unos valores a recorrer, dentro de las llaves el código a ejecutar en cada iteración (en este caso, rellenar y como x + 1)

x <- c(0, -7, 1, 4)
y <- c()

Bucles for

Un bucle for es una estructura que permite repetir un conjunto de órdenes un número finito, prefijado y conocido de veces dado un conjunto de índices.

Vamos a definir un vector x <- c(0, -7, 1, 4) y otra variable vacía y. Tras ello definiremos un bucle for con for () { }: dentro de los paréntesis indicaremos un índice y unos valores a recorrer, dentro de las llaves el código a ejecutar en cada iteración (en este caso, rellenar y como x + 1)

x <- c(0, -7, 1, 4)
y <- c()

for (i in 1:4) {
  
}

Bucles for

Un bucle for es una estructura que permite repetir un conjunto de órdenes un número finito, prefijado y conocido de veces dado un conjunto de índices.

Vamos a definir un vector x <- c(0, -7, 1, 4) y otra variable vacía y. Tras ello definiremos un bucle for con for () { }: dentro de los paréntesis indicaremos un índice y unos valores a recorrer, dentro de las llaves el código a ejecutar en cada iteración (en este caso, rellenar y como x + 1)

x <- c(0, -7, 1, 4)
y <- c()

for (i in 1:4) {
  y[i] <- x[i] + 1
}

Bucles for

Fíjate que debido a que R funciona de manera vectorial por defecto, el bucle es lo mismo que hacer x + 1 directamente.

x <- c(0, -7, 1, 4)
y <- c()

for (i in 1:4) {
  y[i] <- x[i] + 1
}
y
[1]  1 -6  2  5
y2 <- x + 1
y2
[1]  1 -6  2  5

Bucles for

Otra opción habitual es indicar los índices de manera «automática»: desde el primero 1 hasta el último (que corresponde con la longitud de x length(x))

x <- c(0, -7, 1, 4)
y <- c()

for (i in 1:length(x)) {
  y[i] <- x[i] + 1
}
y
[1]  1 -6  2  5

Bucles for

Así la estructura general de un bucle for será siempre la siguiente

for (índice in conjunto) { 
  código (dependiente de i)
}

SIEMPRE sabemos cuántas iteraciones tenemos (tantas como elementos haya en el conjunto a indexar)

Evitando bucles

Como ya hemos aprendido con el paquete{microbenchmark} podemos chequear como los bucles suelen ser muy ineficientes (de ahí que debamos evitarlos en la mayoría de ocasiones

library(microbenchmark)
x <- 1:1000
microbenchmark(y <- x^2, 
               for (i in 1:100) { y[i] <- x[i]^2 },
               times = 500)
Unit: nanoseconds
                                    expr    min     lq       mean   median
                                y <- x^2    902   1107   1217.864   1148.0
 for (i in 1:100) {     y[i] <- x[i]^2 } 800730 813153 861060.270 823505.5
     uq     max neval
   1230    8323   500
 833776 3442237   500

Bucles for

Podemos ver otro ejemplo de bucle combinando números y textos: definimos un vector de edades y de nombres, e imprimimos el nombre y edad i-ésima.

nombres <- c("Javi", "Sandra", "Carlos", "Marcos", "Marta")
edades <- c(33, 27, 18, 43, 29)
library(glue)
for (i in 1:5) { 
  
  print(glue("{nombres[i]} tiene {edades[i]} años")) 
  
}
Javi tiene 33 años
Sandra tiene 27 años
Carlos tiene 18 años
Marcos tiene 43 años
Marta tiene 29 años

Bucles for

Aunque normalmente se suelen indexar con vectors numéricos, los bucles pueden ser indexados sobre cualquier estructura vectorial, da igual de que tipo sea el conjunto

library(stringr)
week_days <- c("monday", "tuesday", "wednesday", "thursday",
               "friday", "saturday", "sunday")

for (days in week_days) {
  
  print(str_to_upper(days))
}
[1] "MONDAY"
[1] "TUESDAY"
[1] "WEDNESDAY"
[1] "THURSDAY"
[1] "FRIDAY"
[1] "SATURDAY"
[1] "SUNDAY"

Bucles y condicionales

Vamos a combinar las estructuras condicionales y los bucles: usando el conjunto swiss del paquete {datasets}, vamos a asignar NA si los valores de fertilidad son mayores de 80.

for (i in 1:nrow(swiss)) {
  
  if (swiss$Fertility[i] > 80) { 
    
    swiss$Fertility[i] <- NA
    
  }
}

Esto es exactamente igual a un if_else() vectorizado

data("swiss")
swiss$Fertility <- if_else(swiss$Fertility > 80, NA, swiss$Fertility)

Bucles while

Otra forma de crear un bucle es con la estructura while { }, que nos ejecutará un bucle un número desconocido de veces, hasta que una condición deje de cumplirse (de hecho puede que nunca termine). Por ejemplo, vamos a inializar una variable ciclos <- 1, que incrementaremos en cada paso, y no saldremos del bucle hasta que ciclos > 4.

ciclos <- 1
while(ciclos <= 4) {
  
  print(glue("No todavía, vamos por el ciclo {ciclos}")) 
  ciclos <- ciclos + 1
  
}
No todavía, vamos por el ciclo 1
No todavía, vamos por el ciclo 2
No todavía, vamos por el ciclo 3
No todavía, vamos por el ciclo 4

Bucles while

Un bucle while será siempre como sigue

while(condición) {
  
  código a hacer mientras la condición sea TRUE
  # normalmente aquí se actualiza alguna variable
  
}

Bucles while

¿Qué sucede cuando la condición nunca es FALSE? Pruébalo tu mismo

while (1 > 0) {
  
  print("Presiona ESC para salir del bucle")
  
}

 

Cuidado

Un bucle while { } puede ser bastante «peligroso» sino controlamos bien cómo pararlo.

Bucles while

Contamos con dos palabras reservadas para abortar un bucle o forzar su avance:

  • break: permite abortar un bucle incluso si no se ha llegado a su final
for(i in 1:10) {
  if (i == 3) {
    
    break # si i = 3, abortamos bucle
    
  }
  print(i)
}
[1] 1
[1] 2

Bucles while

Contamos con dos palabras reservadas para abortar un bucle o forzar su avance:

  • next: fuerza un bucle a avanzar a la siguiente iteración
for(i in 1:5) {
  if (i == 3) {
    
    next # si i = 3, la obvia y continua al siguiente
    
  }
  print(i)
}
[1] 1
[1] 2
[1] 4
[1] 5

💻 Tu turno

Intenta realizar los siguientes ejercicios sin mirar las soluciones

📝 ¿Cuál es la salida del siguiente código?

if_else(sqrt(9) < 2, sqrt(9), 0)
Código
La salida es 0 ya que sqrt(9) es igual 3, y dado que no es menor que 2, devuelve el segundo argumento que es 0

📝 ¿Cuál es la salida del siguiente código?

x <- c(1, NA, -1, 9)
if_else(sqrt(x) < 2, 0, 1)
Código
La salida es el vector c(0, NA, NA, 1) ya que sqrt(1) sí es menor que 2, sqrt(9) no lo es, y tanto en el caso de sqrt(NA) (raíz de ausente) como sqrt(-1) (devuelve NaN, not a number), su raíz cuadrada no puede verificarse si es menor que 2 o no, así que la salida es NA.

📝 Modifica el código inferior para que, cuando no se pueda verificar si la raíz cuadrada de un número es menor que 2, devuelva -1

x <- c(1, NA, -1, 9)
if_else(sqrt(x) < 2, 0, 1)
Código
x <- c(1, NA, -1, 9)
if_else(sqrt(x) < 2, 0, 1, missing = -1)

📝 ¿Cuál es son los valores de x e y del código inferior para z <- 1, z <- -1 y z <- -5?

z <- -1
if (z > 0) {
  
  x <- z^3
  y <- -sqrt(z)
  
} else if (abs(z) < 2) {
  
  x <- z^4
  y <- sqrt(-z)
  
} else {
  
  x <- z/2
  y <- abs(z)
  
}
Código
En primero caso x = 1 e y = -1. En el segundo caso x = 1 e y = 1. En el tercer caso -1 y 2

📝 ¿Qué sucederá si ejecutamos el código inferior?

z <- "a"
if (z > 0) {
  
  x <- z^3
  y <- -sqrt(z)
  
} else if (abs(z) < 2) {
  
  x <- z^4
  y <- sqrt(-z)
  
} else {
  
  x <- z/2
  y <- abs(z)
  
}
Código
# dará error ya que no es un argumento numérico
Error in z^3 : non-numeric argument to binary operator

📝 Del paquete {lubridate}, la función hour() nos devuelve la hora de una fecha dada, y la función now() nos devuelve fecha y hora del momento actual. Con ambas funciones haz que se imprima por pantalla (cat()) “buenas noches” solo a partir de las 21 horas.

Código
# Cargamos librería
library(lubridate)

# Fecha-hora actual
fecha_actual <- now()

# Estructura if
if (hour(fecha_actual) > 21) {
  
  cat("Buenas noches") # print/cat dos formas de imprimir por pantalla
}

📝 Modifica el código inferior para que se imprima un mensaje por pantalla si y solo si todos los datos de airquality son con mes distinto a enero

library(datasets)
months <- airquality$Month

if (months == 2) {
  print("No hay datos de enero")
}
Código
library(datasets)
months <- airquality$Month

if (all(months != 1)) {
  print("No hay datos de enero")
}

📝 Modifica el código inferior para guardar en una variable llamada temp_alta un TRUE si alguno de los registros tiene una temperatura superior a 90 grados Farenheit y FALSE en cualquier otro caso

temp <- airquality$Temp

if (temp == 100) {
  print("Algunos de los registros tienen temperaturas superiores a 90 grados Farenheit")
}
Código
# Option 1
temp <- airquality$Temp
temp_alta <- FALSE
if (any(temp > 90)) {
   temp_alta <- TRUE
}

# Option 2
temp_alta <- any(airquality$Temp > 90)

📝 Modifica el código inferior para diseñar un bucle for de 5 iteraciones que solo recorra los primeros 5 impares (y en cada paso del bucle los imprima)

for (i in 1:5) {
  
  print(i)
}
Código
for (i in c(1, 3, 5, 7, 9)) {
  
  print(i)
}

📝 Modifica el código inferior para diseñar un bucle while que empiece con un contador count <- 1 y pare cuando llegue a 6

count <- 1
while (count == 2) {
  
  print(count)
}
Código
count <- 1
while (count < 6) {
  
  print(count)
  count <- count + 1
  
}

🐣 Caso práctico II

Intenta responder a las preguntas planteadas en el workbook donde tendrás que diseñar algunos estudios de simulación haciendo uso de bucles y estructuras condicionales

Creando funciones

No solo podemos usar funciones predeterminadas que vienen ya cargadas en paquetes, además podemos crear nuestras propias funciones para automatizar tareas. ¿Cómo crear nuestra propia función? Veamos su esquema básico:

  • Nombre: por ejemplo name_fun (sin espacios ni caracteres extraños). Al nombre le asignamos la palabra reservada function().

  • Definir argumentos de entrada (dentro de function()).

  • Cuerpo de la función dentro de { }.

  • Finalizamos la función con los argumentos de salida con return().

name_fun <- function() {
  
}

Creando funciones

No solo podemos usar funciones predeterminadas que vienen ya cargadas en paquetes, además podemos crear nuestras propias funciones para automatizar tareas. ¿Cómo crear nuestra propia función? Veamos su esquema básico:

  • Nombre: por ejemplo name_fun (sin espacios ni caracteres extraños). Al nombre le asignamos la palabra reservada function().

  • Definir argumentos de entrada (dentro de function()).

  • Cuerpo de la función dentro de { }.

  • Finalizamos la función con los argumentos de salida con return().

name_fun <- function(arg1, arg2, ...) {
  
}

Creando funciones

No solo podemos usar funciones predeterminadas que vienen ya cargadas en paquetes, además podemos crear nuestras propias funciones para automatizar tareas. ¿Cómo crear nuestra propia función? Veamos su esquema básico:

  • Nombre: por ejemplo name_fun (sin espacios ni caracteres extraños). Al nombre le asignamos la palabra reservada function().

  • Definir argumentos de entrada (dentro de function()).

  • Cuerpo de la función dentro de { }.

  • Finalizamos la función con los argumentos de salida con return().

name_fun <- function(arg1, arg2, ...) {
  
  código a ejecutar
  
}

Creando funciones

No solo podemos usar funciones predeterminadas que vienen ya cargadas en paquetes, además podemos crear nuestras propias funciones para automatizar tareas. ¿Cómo crear nuestra propia función? Veamos su esquema básico:

  • Nombre: por ejemplo name_fun (sin espacios ni caracteres extraños). Al nombre le asignamos la palabra reservada function().

  • Definir argumentos de entrada (dentro de function()).

  • Cuerpo de la función dentro de { }.

  • Finalizamos la función con los argumentos de salida con return().

name_fun <- function(arg1, arg2, ...) {
  
  código a ejecutar
  
  return(var_salida)
  
}

Creando funciones

  • arg1, arg2, ...: serán los argumentos de entrada, los argumentos que toma la función para ejecutar el código que tiene dentro

  • código: líneas de código que queramos que ejecute la función.

  • return(var_salida): se introducirán los argumentos de salida.

name_fun <- function(arg1, arg2, ...) {
  
  # Código que queramos ejecutar
  código
  
  # Salida
  return(var_salida)
  
}

Importante

Todas las variables que definamos dentro de la función son variables LOCALES: solo existirán dentro de la función salvo que especifiquemos lo contrario.

Creando funciones

Veamos un ejemplo muy simple de función para calcular el área de un rectángulo.

Dado que el área de un rectángulo se calcula como el producto de sus lados, necesitaremos precisamente eso, sus lados: esos serán los argumentos de entrada y el valor a devolver será justo su área (\(lado_1 * lado_2\)).

# Definición del nombre de función y argumentos de entrada
calcular_area <- function(lado_1, lado_2) {
  
}

Creando funciones

Veamos un ejemplo muy simple de función para calcular el área de un rectángulo.

Dado que el área de un rectángulo se calcula como el producto de sus lados, necesitaremos precisamente eso, sus lados: esos serán los argumentos de entrada y el valor a devolver será justo su área (\(lado_1 * lado_2\)).

# Definición del nombre de función y argumentos de entrada
calcular_area <- function(lado_1, lado_2) {
  
  area <- lado_1 * lado_2
  
}

Creando funciones

Veamos un ejemplo muy simple de función para calcular el área de un rectángulo.

Dado que el área de un rectángulo se calcula como el producto de sus lados, necesitaremos precisamente eso, sus lados: esos serán los argumentos de entrada y el valor a devolver será justo su área (\(lado_1 * lado_2\)).

# Definición del nombre de función y argumentos de entrada
calcular_area <- function(lado_1, lado_2) {
  
  area <- lado_1 * lado_2
  return(area)
  
}

Uso de funciones

También podemos hacer una definición directa de las variables sin almacenar por el camino.

# Definición del nombre de función y argumentos de entrada
calcular_area <- function(lado_1, lado_2) {
  
  return(lado_1 * lado_2)
  
}

¿Cómo aplicar la función?

calcular_area(5, 3) # área de un rectángulo 5 x 3 
[1] 15
calcular_area(1, 5) # área de un rectángulo 1 x 5
[1] 5

Uso de funciones

Consejo

Aunque no sea necesario, es recomendable hacer explícita la llamada de los argumentos, especificando en el código qué valor es para cada argumento para que no dependa de su orden, haciendo el código más legible

calcular_area(lado_1 = 5, lado_2 = 3) # área de un rectángulo 5 x 3 
[1] 15
calcular_area(lado_2 = 3, lado_1 = 5) # área de un rectángulo 5 x 3 
[1] 15

Argumentos por defecto

Imagina ahora que nos damos cuenta que el 90% de las veces usamos dicha función para calcular por defecto el área de un cuadrado (es decir, solo necesitamos un lado). Para ello, podemos definir argumentos por defecto en la función: tomarán dicho valor salvo que le asignemos otro.

¿Por qué no asignar lado_2 = lado_1 por defecto, para ahorrar líneas de código y tiempo?

calcular_area <- function(lado_1, lado_2 = lado_1) {
  
  # Cuerpo de la función
  area <- lado_1 * lado_2
  
  # Resultado que devolvemos
  return(area)
  
}

Argumentos por defecto

calcular_area <- function(lado_1, lado_2 = lado_1) {
  
  # Cuerpo de la función
  area <- lado_1 * lado_2
  
  # Resultado que devolvemos
  return(area)
  
}

Ahora por defecto el segundo lado será igual al primero (si se lo añadimos usará ambos).

calcular_area(lado_1 = 5) # cuadrado
[1] 25
calcular_area(lado_1 = 5, lado_2 = 7) # rectángulo
[1] 35

Salida múltiple

Compliquemos un poco la función y añadamos en la salida los valores de cada lado, etiquetados como lado_1 y lado_2, empaquetando la salida en una vector.

# Definición del nombre de función y argumentos de entrada
calcular_area <- function(lado_1, lado_2 = lado_1) {
  
  # Cuerpo de la función
  area <- lado_1 * lado_2
  
  # Resultado
  return(c("area" = area, "lado_1" = lado_1, "lado_2" = lado_2))
  
}

Salida múltiple

Podemos complicar un poco más la salida añadiendo una cuarta variable que nos diga, en función de los argumentos, si rectángulo o cuadrado, teniendo que añadir en la salida una variable que de tipo caracter (o lógica).

# Definición del nombre de función y argumentos de entrada
calcular_area <- function(lado_1, lado_2 = lado_1) {
  
  # Cuerpo de la función
  area <- lado_1 * lado_2
  
  # Resultado
  return(c("area" = area, "lado_1" = lado_1, "lado_2" = lado_2,
           "tipo" = if_else(lado_1 == lado_2, "cuadrado", "rectángulo")))
  
}
calcular_area(5, 3)
        area       lado_1       lado_2         tipo 
        "15"          "5"          "3" "rectángulo" 

Problema: al intentar juntar números y texto, lo convierte todo a números. Podríamos guardarlo todo en un tibble() como hemos aprendido o en un objeto conocido en R como listas

Orden de los argumentos

Antes nos daba igual el orden de los argumentos pero ahora el orden de los argumentos de entrada importa, ya que en la salida incluimos lado_1 y lado_2.

Recomendación

Como se comentaba, altamente recomendable hacer la llamada a la función indicando explícitamente los argumentos para mejorar legibilidad e interpretabilidad.

# Equivalente a calcular_area(5, 3)
calcular_area(lado_1 = 5, lado_2 = 3)
        area       lado_1       lado_2         tipo 
        "15"          "5"          "3" "rectángulo" 

Variables locales vs globales

Un aspecto importante sobre el que reflexionar con las funciones: ¿qué sucede si nombramos a una variable dentro de una función a la que se nos ha olvidado asignar un valor dentro de la misma?

Debemos ser cautos al usar funciones en R, ya que debido a la «regla lexicográfica», si una variable no se define dentro de la función, R buscará dicha variable en el entorno de variables.

x <- 1
funcion_ejemplo <- function() {
    
  print(x) # No devuelve nada, solo realiza la acción 
}
funcion_ejemplo()
[1] 1

Variables locales vs globales

Si una variable ya está definida fuera de la función (entorno global), y además es usada dentro de cambiando su valor, el valor solo cambia dentro pero no en el entorno global.

x <- 1
funcion_ejemplo <- function() {
    
  x <- 2
  print(x) # lo que vale dentro
}
# lo que vale dentro
funcion_ejemplo() #<<
[1] 2
# lo que vale fuera
print(x) #<<
[1] 1

Variables locales vs globales

Si queremos que además de cambiar localmente lo haga globalmente deberemos usar la doble asignación (<<-).

x <- 1
y <- 2
funcion_ejemplo <- function() {
  
  # no cambia globalmente, solo localmente
  x <- 3 
  # cambia globalmente
  y <<- 0 #<<
  
  print(x)
  print(y)
}

funcion_ejemplo() # lo que vale dentro
[1] 3
[1] 0
x # lo que vale fuera
[1] 1
y # lo que vale fuera
[1] 0

💻 Tu turno

Intenta realizar los siguientes ejercicios sin mirar las soluciones

📝 Modifica el código inferior para definir una función llamada funcion_suma, de forma que dados dos elementos, devuelve su suma.

nombre <- function(x, y) {
  suma <- # código a ejecutar
  return()
}
# Aplicamos la función
suma(3, 7)
Código
funcion_suma <- function(x, y) {
  suma <- x + y
  return(suma)
}
funcion_suma(3, 7)

📝 Modifica el código inferior para definir una función llamada funcion_producto, de forma que dados dos elementos, devuelve su producto, pero que por defecto calcule el cuadrado

nombre <- function(x, y) {
  producto <- # código de la multiplicación
  return()
}
producto(3)
producto(3, -7)
Código
funcion_producto <- function(x, y = x) {
  producto <- x * y
  return(producto)
}
funcion_producto(3)
funcion_producto(3, -7)

📝 Define una función llamada igualdad_nombres que, dados dos nombres, nos diga si son iguales o no. Hazlo considerando importantes las mayúsculas, y sin que importen las mayúsculas. Usa el paquete {stringr}.

Código
# Distinguiendo mayúsculas
igualdad_nombres <- function(persona_1, persona_2) {
  return(persona_1 == persona_2)
}
igualdad_nombres("Javi", "javi")
igualdad_nombres("Javi", "Lucía")

# Sin importar mayúsculas
igualdad_nombres <- function(persona_1, persona_2) {
  return(toupper(persona_1) == toupper(persona_2))
}
igualdad_nombres("Javi", "javi")
igualdad_nombres("Javi", "Lucía")

📝 Crea una función llamada calculo_IMC que, dados dos argumentos (peso y estatura en metros) y un nombre, devuelva una lista con el IMC (\(peso/(estatura_m^2)\)) y el nombre.

Código
calculo_IMC <- function(nombre, peso, estatura) {
  
  return(list("nombre" = nombre, "IMC" = peso/(estatura^2)))
}

📝 Repite el ejercicio anterior pero con otro argumento opcional que se llame unidades (por defecto, unidades = "metros"). Desarrolla la función de forma que haga lo correcto si unidades = "metros" y si unidades = "centímetros".

Código
calculo_IMC <- function(nombre, peso, estatura, unidades = "metros") {
  
  return(list("nombre" = nombre,
              "IMC" = peso/(if_else(unidades == "metros", estatura, estatura/100)^2)))
}

📝 Crea un tibble ficticio de 7 personas, con tres variables (inventa nombre, y simula peso, estatura en centímetros), y aplica la función definida de forma que obtengamos una cuarta columna con su IMC.

Código
datos <-
  tibble("nombres" = c("javi", "sandra", "laura",
                       "ana", "carlos", "leo", NA),
         "peso" = rnorm(n = 7, mean = 70, sd = 1),
         "estatura" = rnorm(n = 7, mean = 168, sd = 5))

datos |> 
  mutate(IMC = calculo_IMC(nombres, peso, estatura, unidades = "centímetros")$IMC)

📝 Crea una función llamada atajo que tenga dos argumentos numéricos x e y. Si ambos son iguales, debes devolver "iguales" y hacer que la función acaba automáticamente (piensa cuándo una función sale). OJO: x e y podrían ser vectores. Si son distintos (de igual de longitud) calcula la proporción de elementos diferentes. Si son distintos (por ser distinta longitud), devuelve los elementos que no sean comunes.

Código
atajo <- function(x, y) {
  
  if (all(x == y) & length(x) == length(y)) { return("iguales") }
  else {
   
    if (length(x) == length(y)) {
      
      n_diff <- sum(x != y) / length(x)
      return(n_diff)
      
    } else {
      
      diff_elem <- unique(c(setdiff(x, y), setdiff(y, x)))
      return(diff_elem)
    }
    
  }
}

R base vs Tidyverse

Hasta ahora todo lo que hemos repasado en R lo hemos realizado en el paradigma de programación conocido como R base. Y es que cuando R nació como lenguaje, muchos de los que programaban en él imitaron formas y metodologías heredadas de otros lenguajes, basado en el uso de

  • Bucles for

  • Bucles while

  • Estructuras if-else

Y aunque conocer dichas estructuras puede sernos en algunos casos interesantes, en la mayoría de ocasiones han quedado caducas y vamos a poder evitarlas (en especial los bucles) ya que R está especialmente diseñado para trabajar de manera funcional (en lugar de elemento a elemento).

¿Qué es tidyverse?

En ese contexto de programación funcional, hace una década nacía {tidyverse}, un «universo» de paquetes para garantizar un flujo de trabajo eficiente, coherente y lexicográficamente sencillo de entender, basado en la idea de que nuestros datos están limpios y ordenados (tidy)

¿Qué es tidyverse?

  • {lubridate} manejo de fechas
  • {rvest}: web scraping
  • {tidymodels}: modelización/predicción
  • {tibble}: optimizando data.frame
  • {tidyr}: limpieza de datos
  • {readr}: carga datos rectangulares (.csv), {readxl} para importar archivos .xls y .xlsx
  • {dplyr}: gramática para depurar
  • {stringr}: manejo de textos
  • {purrr}: manejo de listas
  • {forcats}: manejo de cualitativas
  • {ggplot2}: visualización de datos

¿Qué es tidyverse?

  • {lubridate} manejo de fechas
  • {rvest}: web scraping
  • {tidymodels}: modelización/predicción
  • {tibble}: optimizando data.frame
  • {tidyr}: limpieza de datos
  • {readr}: carga datos rectangulares (.csv), {readxl} para importar archivos .xls y .xlsx
  • {dplyr}: gramática para depurar
  • {stringr}: manejo de textos
  • {purrr}: manejo de listas
  • {forcats}: manejo de cualitativas
  • {ggplot2}: visualización de datos

Filosofía base: tidy data

Tidy datasets are all alike, but every messy dataset is messy in its own way (Hadley Wickham, Chief Scientist en RStudio)

TIDYVERSE

El universo de paquetes {tidyverse} se basa en la idea introducida por Hadley Wickham (el Dios al que rezamos) de estandarizar el formato de los datos para

  • sistematizar la depuración
  • hacer más sencillo su manipulación.
  • código legible

Reglas del tidy data

Lo primero por tanto será entender qué son los conjuntos tidydata ya que todo {tidyverse} se basa en que los datos están estandarizados.

  1. Cada variable en una única columna
  1. Cada individuo en una fila diferente
  1. Cada celda con un único valor
  1. Cada dataset en un tibble
  1. Si queremos cruzar múltiples tablas debemos tener una columna común

Tubería (pipe)

En {tidyverse} será clave el operador pipe (tubería) definido como |> (ctrl+shift+M): será una tubería que recorre los datos y los transforma.

En R base, si queremos aplicar tres funciones first(), second() y third() en orden, sería

third(second(first(datos)))

En {tidyverse} podremos leer de izquierda a derecha y separar los datos de las acciones

datos |> first() |> second() |> third()

Apunte importante

Desde la versión 4.1.0 de R disponemos de |>, un pipe nativo disponible fuera de tidyverse, sustituyendo al antiguo pipe %>% que dependía del paquete {magrittr} (bastante problemático).

Tubería (pipe)

La principal ventaja es que el código sea muy legible (casi literal) pudiendo hacer grandes operaciones con los datos con apenas código.

datos |>
  limpio(...) |>
  filtro(...) |>
  selecciono(...) |>
  ordeno(...) |>
  modifico(...) |>
  renombro(...) |>
  agrupo(...) |>
  cuento(...) |>
  resumo(...) |>
  pinto(...)

Datos SUCIOS: messy data

¿Pero qué aspecto tienen los datos no tidy? Vamos a cargar la tabla table4a del paquete {tidyr} (ya lo tenemos cargado del entorno tidyverse).

library(tidyr)
table4a
# A tibble: 3 × 3
  country     `1999` `2000`
  <chr>        <dbl>  <dbl>
1 Afghanistan    745   2666
2 Brazil       37737  80488
3 China       212258 213766

¿Qué puede estar fallando?

Pivotar: pivot_longer()

table4a
# A tibble: 3 × 3
  country     `1999` `2000`
  <chr>        <dbl>  <dbl>
1 Afghanistan    745   2666
2 Brazil       37737  80488
3 China       212258 213766

❎ Cada fila representa dos observaciones (1999 y 2000) → las columnas 1999 y 2000 en realidad deberían ser en sí valores de una variable y no nombres de columnas.

Incluiremos una nueva columna que nos guarde el año y otra que guarde el valor de la variable de interés en cada uno de esos años. Y lo haremos con la función pivot_longer(): pivotaremos la tabla a formato long:

table4a |> 
  pivot_longer(cols = c("1999", "2000"), names_to = "year", values_to = "cases")
# A tibble: 6 × 3
  country     year   cases
  <chr>       <chr>  <dbl>
1 Afghanistan 1999     745
2 Afghanistan 2000    2666
3 Brazil      1999   37737
4 Brazil      2000   80488
5 China       1999  212258
6 China       2000  213766

Pivotar: pivot_longer()

table4a |> 
  pivot_longer(cols = c("1999", "2000"),
               names_to = "year",
               values_to = "cases")
# A tibble: 6 × 3
  country     year   cases
  <chr>       <chr>  <dbl>
1 Afghanistan 1999     745
2 Afghanistan 2000    2666
3 Brazil      1999   37737
4 Brazil      2000   80488
5 China       1999  212258
6 China       2000  213766

  • cols: nombre de las variables a pivotar
  • names_to: nombre de la nueva variable a la quemandamos la cabecera de la tabla (los nombres).
  • values_to: nombre de la nueva variable a la que vamos a mandar los datos.

Datos SUCIOS: messy data

Veamos otro ejemplo con la tabla table2

table2
# A tibble: 12 × 4
   country      year type            count
   <chr>       <dbl> <chr>           <dbl>
 1 Afghanistan  1999 cases             745
 2 Afghanistan  1999 population   19987071
 3 Afghanistan  2000 cases            2666
 4 Afghanistan  2000 population   20595360
 5 Brazil       1999 cases           37737
 6 Brazil       1999 population  172006362
 7 Brazil       2000 cases           80488
 8 Brazil       2000 population  174504898
 9 China        1999 cases          212258
10 China        1999 population 1272915272
11 China        2000 cases          213766
12 China        2000 population 1280428583

¿Qué puede estar fallando?

Pivotar: pivot_wider()

# A tibble: 12 × 4
   country      year type            count
   <chr>       <dbl> <chr>           <dbl>
 1 Afghanistan  1999 cases             745
 2 Afghanistan  1999 population   19987071
 3 Afghanistan  2000 cases            2666
 4 Afghanistan  2000 population   20595360
 5 Brazil       1999 cases           37737
 6 Brazil       1999 population  172006362
 7 Brazil       2000 cases           80488
 8 Brazil       2000 population  174504898
 9 China        1999 cases          212258
10 China        1999 population 1272915272
11 China        2000 cases          213766
12 China        2000 population 1280428583

❎ Cada observación está dividido en dos filas → los registros con el mismo año deberían ser el mismo

Lo que haremos será lo opuesto: con pivot_wider() ensancharemos la tabla

table2 |>  pivot_wider(names_from = type, values_from = count)
# A tibble: 6 × 4
  country      year  cases population
  <chr>       <dbl>  <dbl>      <dbl>
1 Afghanistan  1999    745   19987071
2 Afghanistan  2000   2666   20595360
3 Brazil       1999  37737  172006362
4 Brazil       2000  80488  174504898
5 China        1999 212258 1272915272
6 China        2000 213766 1280428583

Datos SUCIOS: messy data

Veamos otro ejemplo con la tabla table3

table3
# A tibble: 6 × 3
  country      year rate             
  <chr>       <dbl> <chr>            
1 Afghanistan  1999 745/19987071     
2 Afghanistan  2000 2666/20595360    
3 Brazil       1999 37737/172006362  
4 Brazil       2000 80488/174504898  
5 China        1999 212258/1272915272
6 China        2000 213766/1280428583

¿Qué puede estar fallando?

Separar: separate()

table3
# A tibble: 6 × 3
  country      year rate             
  <chr>       <dbl> <chr>            
1 Afghanistan  1999 745/19987071     
2 Afghanistan  2000 2666/20595360    
3 Brazil       1999 37737/172006362  
4 Brazil       2000 80488/174504898  
5 China        1999 212258/1272915272
6 China        2000 213766/1280428583

❎ Cada celda contiene varios valores

Lo que haremos será hacer uso de la función separate() para mandar separar cada valor a una columna diferente.

table3 |> separate(rate, into = c("cases", "pop"))
# A tibble: 6 × 4
  country      year cases  pop       
  <chr>       <dbl> <chr>  <chr>     
1 Afghanistan  1999 745    19987071  
2 Afghanistan  2000 2666   20595360  
3 Brazil       1999 37737  172006362 
4 Brazil       2000 80488  174504898 
5 China        1999 212258 1272915272
6 China        2000 213766 1280428583

Separar: separate()

table3 |> separate(rate, into = c("cases", "pop"))
# A tibble: 6 × 4
  country      year cases  pop       
  <chr>       <dbl> <chr>  <chr>     
1 Afghanistan  1999 745    19987071  
2 Afghanistan  2000 2666   20595360  
3 Brazil       1999 37737  172006362 
4 Brazil       2000 80488  174504898 
5 China        1999 212258 1272915272
6 China        2000 213766 1280428583

Fíjate que los datos, aunque los ha separado, los ha mantenido como texto cuando en realidad deberían ser variables numéricas. Para ello podemos añadir el argumento opcional convert = TRUE

table3 |> separate(rate, into = c("cases", "pop"), convert = TRUE)
# A tibble: 6 × 4
  country      year  cases        pop
  <chr>       <dbl>  <int>      <int>
1 Afghanistan  1999    745   19987071
2 Afghanistan  2000   2666   20595360
3 Brazil       1999  37737  172006362
4 Brazil       2000  80488  174504898
5 China        1999 212258 1272915272
6 China        2000 213766 1280428583

Datos SUCIOS: messy data

Veamos el último ejemplo con la tabla table5

table5
# A tibble: 6 × 4
  country     century year  rate             
  <chr>       <chr>   <chr> <chr>            
1 Afghanistan 19      99    745/19987071     
2 Afghanistan 20      00    2666/20595360    
3 Brazil      19      99    37737/172006362  
4 Brazil      20      00    80488/174504898  
5 China       19      99    212258/1272915272
6 China       20      00    213766/1280428583

¿Qué puede estar fallando?

Unir unite()

table5
# A tibble: 6 × 4
  country     century year  rate             
  <chr>       <chr>   <chr> <chr>            
1 Afghanistan 19      99    745/19987071     
2 Afghanistan 20      00    2666/20595360    
3 Brazil      19      99    37737/172006362  
4 Brazil      20      00    80488/174504898  
5 China       19      99    212258/1272915272
6 China       20      00    213766/1280428583

❎ Tenemos mismos valores divididos en dos columnas

Usaremos unite() para unir los valores de siglo y año en una misma columna

table5 |> unite(col = year_completo, century, year, sep = "")
# A tibble: 6 × 3
  country     year_completo rate             
  <chr>       <chr>         <chr>            
1 Afghanistan 1999          745/19987071     
2 Afghanistan 2000          2666/20595360    
3 Brazil      1999          37737/172006362  
4 Brazil      2000          80488/174504898  
5 China       1999          212258/1272915272
6 China       2000          213766/1280428583

Ejemplo: relig_income

Vamos a realizar un ejemplo juntos con la tabla relig_income del paquete {tidyr}. Como se indica en la ayuda ? relig_income, la tabla representa la cantidad de personas que hay en cada tramo de ingresos anuales (20k = 20 000$) y en cada religión.

relig_income
# A tibble: 18 × 11
   religion `<$10k` `$10-20k` `$20-30k` `$30-40k` `$40-50k` `$50-75k` `$75-100k`
   <chr>      <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>      <dbl>
 1 Agnostic      27        34        60        81        76       137        122
 2 Atheist       12        27        37        52        35        70         73
 3 Buddhist      27        21        30        34        33        58         62
 4 Catholic     418       617       732       670       638      1116        949
 5 Don’t k…      15        14        15        11        10        35         21
 6 Evangel…     575       869      1064       982       881      1486        949
 7 Hindu          1         9         7         9        11        34         47
 8 Histori…     228       244       236       238       197       223        131
 9 Jehovah…      20        27        24        24        21        30         15
10 Jewish        19        19        25        25        30        95         69
11 Mainlin…     289       495       619       655       651      1107        939
12 Mormon        29        40        48        51        56       112         85
13 Muslim         6         7         9        10         9        23         16
14 Orthodox      13        17        23        32        32        47         38
15 Other C…       9         7        11        13        13        14         18
16 Other F…      20        33        40        46        49        63         46
17 Other W…       5         2         3         4         2         7          3
18 Unaffil…     217       299       374       365       341       528        407
# ℹ 3 more variables: `$100-150k` <dbl>, `>150k` <dbl>,
#   `Don't know/refused` <dbl>

Ejemplo: relig_income

relig_income
# A tibble: 18 × 11
   religion `<$10k` `$10-20k` `$20-30k` `$30-40k` `$40-50k` `$50-75k` `$75-100k`
   <chr>      <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>      <dbl>
 1 Agnostic      27        34        60        81        76       137        122
 2 Atheist       12        27        37        52        35        70         73
 3 Buddhist      27        21        30        34        33        58         62
 4 Catholic     418       617       732       670       638      1116        949
 5 Don’t k…      15        14        15        11        10        35         21
 6 Evangel…     575       869      1064       982       881      1486        949
 7 Hindu          1         9         7         9        11        34         47
 8 Histori…     228       244       236       238       197       223        131
 9 Jehovah…      20        27        24        24        21        30         15
10 Jewish        19        19        25        25        30        95         69
11 Mainlin…     289       495       619       655       651      1107        939
12 Mormon        29        40        48        51        56       112         85
13 Muslim         6         7         9        10         9        23         16
14 Orthodox      13        17        23        32        32        47         38
15 Other C…       9         7        11        13        13        14         18
16 Other F…      20        33        40        46        49        63         46
17 Other W…       5         2         3         4         2         7          3
18 Unaffil…     217       299       374       365       341       528        407
# ℹ 3 more variables: `$100-150k` <dbl>, `>150k` <dbl>,
#   `Don't know/refused` <dbl>

¿Es tidydata?

Ejemplo: relig_income

relig_income
# A tibble: 18 × 11
   religion `<$10k` `$10-20k` `$20-30k` `$30-40k` `$40-50k` `$50-75k` `$75-100k`
   <chr>      <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>      <dbl>
 1 Agnostic      27        34        60        81        76       137        122
 2 Atheist       12        27        37        52        35        70         73
 3 Buddhist      27        21        30        34        33        58         62
 4 Catholic     418       617       732       670       638      1116        949
 5 Don’t k…      15        14        15        11        10        35         21
 6 Evangel…     575       869      1064       982       881      1486        949
 7 Hindu          1         9         7         9        11        34         47
 8 Histori…     228       244       236       238       197       223        131
 9 Jehovah…      20        27        24        24        21        30         15
10 Jewish        19        19        25        25        30        95         69
11 Mainlin…     289       495       619       655       651      1107        939
12 Mormon        29        40        48        51        56       112         85
13 Muslim         6         7         9        10         9        23         16
14 Orthodox      13        17        23        32        32        47         38
15 Other C…       9         7        11        13        13        14         18
16 Other F…      20        33        40        46        49        63         46
17 Other W…       5         2         3         4         2         7          3
18 Unaffil…     217       299       374       365       341       528        407
# ℹ 3 more variables: `$100-150k` <dbl>, `>150k` <dbl>,
#   `Don't know/refused` <dbl>

No lo es ya que en realidad solo deberíamos tener una variable de ingresos y la tenemos dividida en 11: todas ellas es la misma variable solo que adopta un valor diferente. ¿Cómo convertirla a tidy data?

Ejemplo: relig_income

La idea es pivotar todas las columnas de ingresos para que acaben en una sola columna llamada income, y los valores (el número de personas) en otra llamada people (por ejemplo). La tabla la haremos más larga y menos ancha así que…

relig_tidy <-
  relig_income |>
  pivot_longer(cols = "<$10k":"Don't know/refused", names_to = "income",
               values_to = "people")
relig_tidy 
# A tibble: 180 × 3
   religion income             people
   <chr>    <chr>               <dbl>
 1 Agnostic <$10k                  27
 2 Agnostic $10-20k                34
 3 Agnostic $20-30k                60
 4 Agnostic $30-40k                81
 5 Agnostic $40-50k                76
 6 Agnostic $50-75k               137
 7 Agnostic $75-100k              122
 8 Agnostic $100-150k             109
 9 Agnostic >150k                  84
10 Agnostic Don't know/refused     96
# ℹ 170 more rows

Ejemplo: relig_income

Vamos a hilar más fino: ahora mismo en la variable income en realidad tenemos dos valores, el límite inferior y el superior de la renta. Vamos a separar dicha variable e ingresos en dos, llamadas income_inf y income_sup

relig_tidy 
# A tibble: 180 × 3
   religion income             people
   <chr>    <chr>               <dbl>
 1 Agnostic <$10k                  27
 2 Agnostic $10-20k                34
 3 Agnostic $20-30k                60
 4 Agnostic $30-40k                81
 5 Agnostic $40-50k                76
 6 Agnostic $50-75k               137
 7 Agnostic $75-100k              122
 8 Agnostic $100-150k             109
 9 Agnostic >150k                  84
10 Agnostic Don't know/refused     96
# ℹ 170 more rows

Ejemplo: relig_income

Vamos a hilar más fino: ahora mismo en la variable income en realidad tenemos dos valores, el límite inferior y el superior de la renta. Vamos a separar dicha variable e ingresos en dos, llamadas income_inf y income_sup

relig_tidy |>
  # Separamos por -
  separate(income, into = c("income_inf", "income_sup"), sep = "-")
# A tibble: 180 × 4
   religion income_inf         income_sup people
   <chr>    <chr>              <chr>       <dbl>
 1 Agnostic <$10k              <NA>           27
 2 Agnostic $10                20k            34
 3 Agnostic $20                30k            60
 4 Agnostic $30                40k            81
 5 Agnostic $40                50k            76
 6 Agnostic $50                75k           137
 7 Agnostic $75                100k          122
 8 Agnostic $100               150k          109
 9 Agnostic >150k              <NA>           84
10 Agnostic Don't know/refused <NA>           96
# ℹ 170 more rows

¿Está ya bien? Fíjate bien…

Ejemplo: relig_income

relig_tidy |>
  # Separamos por -
  separate(income, into = c("income_inf", "income_sup"), sep = "-")
# A tibble: 180 × 4
   religion income_inf         income_sup people
   <chr>    <chr>              <chr>       <dbl>
 1 Agnostic <$10k              <NA>           27
 2 Agnostic $10                20k            34
 3 Agnostic $20                30k            60
 4 Agnostic $30                40k            81
 5 Agnostic $40                50k            76
 6 Agnostic $50                75k           137
 7 Agnostic $75                100k          122
 8 Agnostic $100               150k          109
 9 Agnostic >150k              <NA>           84
10 Agnostic Don't know/refused <NA>           96
# ℹ 170 more rows

Si te fijas la primera columna el "$10k" debería ser una cota superior, no inferior. ¿Cómo indicarle que separe bien ese caso?

Ejemplo: relig_income

Le indicaremos que separe si encuentra "-" o "<" (usamos | para separar ambas opciones)

relig_tidy |>
  # Separamos por -
  separate(income, into = c("income_inf", "income_sup"), sep = "-|<")
# A tibble: 180 × 4
   religion income_inf           income_sup people
   <chr>    <chr>                <chr>       <dbl>
 1 Agnostic ""                   $10k           27
 2 Agnostic "$10"                20k            34
 3 Agnostic "$20"                30k            60
 4 Agnostic "$30"                40k            81
 5 Agnostic "$40"                50k            76
 6 Agnostic "$50"                75k           137
 7 Agnostic "$75"                100k          122
 8 Agnostic "$100"               150k          109
 9 Agnostic ">150k"              <NA>           84
10 Agnostic "Don't know/refused" <NA>           96
# ℹ 170 more rows

Ejemplo: relig_income

relig_tidy <-
  relig_tidy |>
  # Separamos por -
  separate(income, into = c("income_inf", "income_sup"), sep = "-|<")
relig_tidy
# A tibble: 180 × 4
   religion income_inf           income_sup people
   <chr>    <chr>                <chr>       <dbl>
 1 Agnostic ""                   $10k           27
 2 Agnostic "$10"                20k            34
 3 Agnostic "$20"                30k            60
 4 Agnostic "$30"                40k            81
 5 Agnostic "$40"                50k            76
 6 Agnostic "$50"                75k           137
 7 Agnostic "$75"                100k          122
 8 Agnostic "$100"               150k          109
 9 Agnostic ">150k"              <NA>           84
10 Agnostic "Don't know/refused" <NA>           96
# ℹ 170 more rows

Piensa ahora como podemos convertir los límites de ingresos a numéricas (eliminando símbolos, letras, etc)

Ejemplo: relig_income

Para ello usaremos el paquete {stringr}, en concreto la función str_remove_all(), a la que le podemos pasar los caracteres que queremos eliminar (fíjate que $ al ser un caracter reservado en R hay que indicárselo con \\$)

relig_tidy$income_inf <-
  str_remove_all(relig_tidy$income_inf, "\\$|>|k")
relig_tidy$income_sup <-
  str_remove_all(relig_tidy$income_sup, "\\$|>|k")

relig_tidy
# A tibble: 180 × 4
   religion income_inf          income_sup people
   <chr>    <chr>               <chr>       <dbl>
 1 Agnostic ""                  10             27
 2 Agnostic "10"                20             34
 3 Agnostic "20"                30             60
 4 Agnostic "30"                40             81
 5 Agnostic "40"                50             76
 6 Agnostic "50"                75            137
 7 Agnostic "75"                100           122
 8 Agnostic "100"               150           109
 9 Agnostic "150"               <NA>           84
10 Agnostic "Don't now/refused" <NA>           96
# ℹ 170 more rows

Ejemplo: relig_income

Fíjate que tenemos "Don't now/refused". ¿Qué deberíamos tener?

Debería ser un dato ausente así que usaremos if_else(): si contiene dicha frase, NA, en caso contrario su valor (consejo: str_detect() para detectar patrones en textos, y evitar tener que escribir toda la palabra sin errores)

relig_tidy$income_inf <-
  if_else(str_detect(relig_tidy$income_inf, "refused"), NA, relig_tidy$income_inf)
relig_tidy$income_sup <-
  if_else(str_detect(relig_tidy$income_sup, "refused"), NA, relig_tidy$income_sup)
relig_tidy
# A tibble: 180 × 4
   religion income_inf income_sup people
   <chr>    <chr>      <chr>       <dbl>
 1 Agnostic ""         10             27
 2 Agnostic "10"       20             34
 3 Agnostic "20"       30             60
 4 Agnostic "30"       40             81
 5 Agnostic "40"       50             76
 6 Agnostic "50"       75            137
 7 Agnostic "75"       100           122
 8 Agnostic "100"      150           109
 9 Agnostic "150"      <NA>           84
10 Agnostic  <NA>      <NA>           96
# ℹ 170 more rows

Ejemplo: relig_income

relig_tidy
# A tibble: 180 × 4
   religion income_inf income_sup people
   <chr>    <chr>      <chr>       <dbl>
 1 Agnostic ""         10             27
 2 Agnostic "10"       20             34
 3 Agnostic "20"       30             60
 4 Agnostic "30"       40             81
 5 Agnostic "40"       50             76
 6 Agnostic "50"       75            137
 7 Agnostic "75"       100           122
 8 Agnostic "100"      150           109
 9 Agnostic "150"      <NA>           84
10 Agnostic  <NA>      <NA>           96
# ℹ 170 more rows

En la primera línea, ese "" también debería ser `NA``

relig_tidy$income_inf <-
  if_else(relig_tidy$income_inf == "", NA, relig_tidy$income_inf)
relig_tidy$income_suop <-
  if_else(relig_tidy$income_sup == "", NA, relig_tidy$income_sup)

Ejemplo: relig_income

relig_tidy
# A tibble: 180 × 5
   religion income_inf income_sup people income_suop
   <chr>    <chr>      <chr>       <dbl> <chr>      
 1 Agnostic <NA>       10             27 10         
 2 Agnostic 10         20             34 20         
 3 Agnostic 20         30             60 30         
 4 Agnostic 30         40             81 40         
 5 Agnostic 40         50             76 50         
 6 Agnostic 50         75            137 75         
 7 Agnostic 75         100           122 100        
 8 Agnostic 100        150           109 150        
 9 Agnostic 150        <NA>           84 <NA>       
10 Agnostic <NA>       <NA>           96 <NA>       
# ℹ 170 more rows

Además si te fijas los números son en realidad caracteres, así que vamos a convertirlos a números

Ejemplo: relig_income

Además si te fijas los números son en realidad caracteres, así que vamos a convertirlos a números

relig_tidy$income_inf <- as.numeric(relig_tidy$income_inf)
relig_tidy$income_sup <- as.numeric(relig_tidy$income_sup)
relig_tidy
# A tibble: 180 × 5
   religion income_inf income_sup people income_suop
   <chr>         <dbl>      <dbl>  <dbl> <chr>      
 1 Agnostic         NA         10     27 10         
 2 Agnostic         10         20     34 20         
 3 Agnostic         20         30     60 30         
 4 Agnostic         30         40     81 40         
 5 Agnostic         40         50     76 50         
 6 Agnostic         50         75    137 75         
 7 Agnostic         75        100    122 100        
 8 Agnostic        100        150    109 150        
 9 Agnostic        150         NA     84 <NA>       
10 Agnostic         NA         NA     96 <NA>       
# ℹ 170 more rows

Ejemplo: relig_income

¿Se te ocurre alguna forma de «cuantificar numéricamente» los valores ausentes que tenemos en este caso?

Si te fijas en realidad cuando hay ausente en el límite inferior en realidad podríamos poner un 0 (nadie puede ganar menos de eso) y cuando lo tenemos en el límite superior sería Inf

relig_tidy$income_inf <-
  if_else(is.na(relig_tidy$income_inf), 0, relig_tidy$income_inf)
relig_tidy$income_sup <-
  if_else(is.na(relig_tidy$income_sup), Inf, relig_tidy$income_sup)
relig_tidy
# A tibble: 180 × 5
   religion income_inf income_sup people income_suop
   <chr>         <dbl>      <dbl>  <dbl> <chr>      
 1 Agnostic          0         10     27 10         
 2 Agnostic         10         20     34 20         
 3 Agnostic         20         30     60 30         
 4 Agnostic         30         40     81 40         
 5 Agnostic         40         50     76 50         
 6 Agnostic         50         75    137 75         
 7 Agnostic         75        100    122 100        
 8 Agnostic        100        150    109 150        
 9 Agnostic        150        Inf     84 <NA>       
10 Agnostic          0        Inf     96 <NA>       
# ℹ 170 more rows

Ejemplo: relig_income

Aunque nos haya llevado un rato este es el código completo resumido

relig_tidy <-
  relig_income |>
  pivot_longer(cols = "<$10k":"Don't know/refused", names_to = "income",
               values_to = "people") |>
  separate(income, into = c("income_inf", "income_sup"), sep = "-|<")

relig_tidy$income_inf <- str_remove_all(relig_tidy$income_inf, "\\$|>|k")
relig_tidy$income_sup <- str_remove_all(relig_tidy$income_sup, "\\$|>|k")

relig_tidy$income_inf <-
  if_else(str_detect(relig_tidy$income_inf, "refused") |
            relig_tidy$income_inf == "", 0, as.numeric(relig_tidy$income_inf))
relig_tidy$income_sup <-
  if_else(str_detect(relig_tidy$income_sup, "refused") |
            relig_tidy$income_sup == "", Inf, as.numeric(relig_tidy$income_sup))

Ejemplo: relig_income

¿Por qué era importante tenerlo en tidydata? Lo veremos más adelante al visualizar los datos pero esto ya nos permite realizar filtros muy rápidos con muy poco código.

Por ejemplo: ¿cuántas personas agnósticas con ingresos superiores (o iguales) a 30 tenemos?

# una línea de código
sum(relig_tidy$people[relig_tidy$religion == "Agnostic" & relig_tidy$income_inf >= 30])
[1] 609

💻 Tu turno

Intenta realizar los siguientes ejercicios sin mirar las soluciones

📝 Usa el dataset original relig_income y trata de responder a la última pregunta: ¿cuántas personas agnósticas con ingresos superiores (o iguales) a 30 tenemos? Compara el código a realizar cuando tenemos tidydata a cuando no. ¿Cuál es más legible si no supieses R? ¿Cuál tiene mayor probabilidad de error?

Código
sum(relig_income[relig_income$religion == "Agnostic",
             c("$30-40k", "$40-50k", "$50-75k", "$75-100k", "$100-150k", ">150k")])

📝 Usando relig_tidy determina quién tiene más ingresos medios, ¿católicos (Catholic) o agnósticos (Agnostic)? Crea antes una variable avg_income (ingresos medios por intervalo): si hay 5 personas entre 20 y 30, y 3 personas entre 30 y 50, la media sería \((25*5 + 40*3)/8\) (si es Inf por arriba, NA)

Código
relig_tidy$avg_income <- 
  if_else(is.infinite(relig_tidy$income_sup), NA, (relig_tidy$income_sup + relig_tidy$income_inf)/2)

# Agnosticos vs catolicos
sum((relig_tidy$avg_income[relig_tidy$religion == "Agnostic"] * relig_tidy$people[relig_tidy$religion == "Agnostic"]), na.rm = TRUE) /
  sum(relig_tidy$people[relig_tidy$religion == "Agnostic"], na.rm = TRUE)

sum((relig_tidy$avg_income[relig_tidy$religion == "Catholic"] * relig_tidy$people[relig_tidy$religion == "Catholic"]), na.rm = TRUE) /
  sum(relig_tidy$people[relig_tidy$religion == "Catholic"], na.rm = TRUE)

📝 Si debemos elegir budismo (Buddhist) e hinduismo (Hindu), ¿cuál de las dos es la religión mayoritaria entre los que ganan más de 50 000$ anuales?

Código
greatest_income <-
  relig_tidy[relig_tidy$income_inf >= 50 & relig_tidy$religion %in% c("Buddhist", "Hindu"), ]

sum(greatest_income$people[greatest_income$religion == "Buddhist"], na.rm = TRUE)
sum(greatest_income$people[greatest_income$religion == "Hindu"], na.rm = TRUE)

📝 Echa un vistazo a la tabla table4b del paquete {tidyr}. ¿Es tidydata? En caso negativo, ¿qué falla? ¿Cómo convertirla a tidy data en caso de que no lo sea ya?

Código
table4b |>
  pivot_longer(cols = "1999":"2000", names_to = "year",
               values_to = "cases")

📝 Echa un vistazo a la tabla billboard del paquete {tidyr}. ¿Es tidydata? En caso negativo, ¿qué falla? ¿Cómo convertirla a tidy data en caso de que no lo sea ya?

Código
billboard |>
  pivot_longer(cols = "wk1":"wk76",
               names_to = "week",
               names_prefix = "wk",
               values_to = "position",
               values_drop_na = TRUE)

🐣 Caso práctico III

En el paquete {tidyr} contamos con el dataset who2 (dataset de la Organización Mundial de la Salud). Intenta responder a las preguntas planteadas en el workbook.

who2
# A tibble: 7,240 × 58
   country      year sp_m_014 sp_m_1524 sp_m_2534 sp_m_3544 sp_m_4554 sp_m_5564
   <chr>       <dbl>    <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>
 1 Afghanistan  1980       NA        NA        NA        NA        NA        NA
 2 Afghanistan  1981       NA        NA        NA        NA        NA        NA
 3 Afghanistan  1982       NA        NA        NA        NA        NA        NA
 4 Afghanistan  1983       NA        NA        NA        NA        NA        NA
 5 Afghanistan  1984       NA        NA        NA        NA        NA        NA
 6 Afghanistan  1985       NA        NA        NA        NA        NA        NA
 7 Afghanistan  1986       NA        NA        NA        NA        NA        NA
 8 Afghanistan  1987       NA        NA        NA        NA        NA        NA
 9 Afghanistan  1988       NA        NA        NA        NA        NA        NA
10 Afghanistan  1989       NA        NA        NA        NA        NA        NA
# ℹ 7,230 more rows
# ℹ 50 more variables: sp_m_65 <dbl>, sp_f_014 <dbl>, sp_f_1524 <dbl>,
#   sp_f_2534 <dbl>, sp_f_3544 <dbl>, sp_f_4554 <dbl>, sp_f_5564 <dbl>,
#   sp_f_65 <dbl>, sn_m_014 <dbl>, sn_m_1524 <dbl>, sn_m_2534 <dbl>,
#   sn_m_3544 <dbl>, sn_m_4554 <dbl>, sn_m_5564 <dbl>, sn_m_65 <dbl>,
#   sn_f_014 <dbl>, sn_f_1524 <dbl>, sn_f_2534 <dbl>, sn_f_3544 <dbl>,
#   sn_f_4554 <dbl>, sn_f_5564 <dbl>, sn_f_65 <dbl>, ep_m_014 <dbl>, …

Clase 3: introducción a series

Introducción al análisis descriptivo de series temporales

¿Qué es una serie temporal?

Como ya hemos visto, una serie temporal se puede definir de manera informal como una muestra de una variable (usualmente continua) recogida de manera secuencial en el tiempo

Código
ggplot(retiro) +
  geom_line(aes(x = fecha, y = tmed), linewidth = 0.3, alpha = 0.7) +
  theme_minimal() +
  labs(title = "Temperatura media como SERIE TEMPORAL",
       x = "t (fecha)", y = "ºC (media)")

Un poco de historia

Las primeras series temporales aparecieron en el siglo XIX, cuando el matemático Laplace (matemático, profesor de Napoleón y luego ministro) se dedicaba a estudiar la relación entre las fases de La Luna y la presión atmosférica (por el nivel del mar).

Aunque su primera aproximación fue un poco chapuza (intentó ajustar una función seno sin tener en cuenta el tiempo), Arthur Schuster decidió aplicar los trabajos de Fourier para que dichas sinusoidales dependiesen del tiempo (Fourier había demostrado que toda función periódica podía descomponerse como suma de senos y cosenos).

Un poco de historia

Treinta años más tarde, Yule y Slutsky aplicaron las ideas de la regresión desarrollados por Galton y Pearson al estudio de procesos cuya variable regresora es ella misma en otro instante temporal (procesos autoregresivos), aunque no fue hasta la llegada de Kolmogorov cuando se formalizó su definición matemática en el contexto de los procesos estocásticos.

Tras acabar la Segunda Guerra Mundial quedaron desclasificados algunos trabajos de Wiener, Kolmogorov, Bartlett y Tukey sobre la predicción de series temporales, así como su estudio en función del análisis de las correlaciones. Tras los trabajos de alisado de Holt y Winter en los años 60, en 1970 Box y Jenkins publican «La Biblia» de las series temporales, un manual donde se presenta una metodología para la identificación, estimación y predicción de series temporales (los conocidos como procesos SARIMA)

Métodos de análisis

  • Métodos descriptivos o clásicos: desarrollados entre 1940 y 1970, están enfocadas principalmente en la estimación de los valores de la serie, siendo bastante malos en la predicción futura.

    • Métodos de decomposición (tendencia-estacionalidad-error):
      • Suavizado clásico
      • STL (seasonal-trend decomposition procedure based on loess)
    • Métodos de alisado (dependencia del pasado disminuye con el tiempo):
      • Alisado exponencial simple
      • Alisado doble de Holt y triple de Holt-Winters . . .
  • Métodos probabilísticos: enmarcados dentro del análisis de los procesos estocásticos, se considera que la serie temporal observada es solo una muestra de un proceso estocástico. Necesitaremos hipótesis.

Métodos descriptivos

Los métodos descriptivos o clásicos se basan en entender, de manera casi empírica, el comportamiento de la serie, pareciéndose más una interpolación que a una metodología rigurosa de estimación y predicción.

 

Vamos a empezar denotando a la serie como \(X = \left\lbrace X_t \right\rbrace_{t}\), de la cual observamos una muestra \(\left(x_0, \ldots, x_{T} \right)\).

¿Cuál se te ocurre que sería el caso más sencillo de serie temporal?

Descomposición clásica: sin tendencia

El caso más sencillo es considerar que la serie es completamente aleatoria, es decir \(X_t = \varepsilon_t\).

Al término \(\left\lbrace \varepsilon_t \right\rbrace_{t \in T}\) le llamaremos error o innovación y, dado que se supone que no captura ningún patrón y que la serie debe ser finita, tendríamos

\[X_t = \varepsilon_t, \quad {\rm E} \left[X_t \right] = {\rm E} \left[\varepsilon_t \right] = 0, \quad {\rm Var} \left[\varepsilon_t \right] = \sigma_{\varepsilon}^{2} = cte < \infty\] donde normalmente el error sigue una distribución normal de varianza finita.

Además dicho término de error cumplirá que el pasado no proporciona ningún tipo de información sobre el futuro, es decir,

\[\varepsilon_{t+1} | \left(\varepsilon_t, \varepsilon_{t-1}, \ldots, \varepsilon_0 \right) \sim \varepsilon_{t+1} \sim N \left(0, \sigma_{\varepsilon}^{2} \right)\]

Sin tendencia

💻 ¿Cómo podríamos simular dicha serie temporal?

  1. Paso 1: construye un tibble de 5 columnas, donde la primera columna contenga los valores \(t=1, 2, \ldots, 1000\); y donde la segunda columna contenga valores simulados según una normal \(N(0, \sigma = 0.5)\), la tercera con \(\sigma = 1\), la cuarta con \(\sigma = 2\) y la quinta con \(\sigma = 4\).
Código
n <- 1000
datos <-
  tibble("t" = 1:n,
         "sd_05" = rnorm(n, mean = 0, sd = 0.5), "sd_1" = rnorm(n, mean = 0, sd = 1),
         "sd_2" = rnorm(n, mean = 0, sd = 2), "sd_4" = rnorm(n, mean = 0, sd = 4))

Sin tendencia

  1. Paso 2: haz un gráfico (¿cuál harías?) solo considerando \(t\) y la primera serie sd_05
Código
ggplot(datos) +
  geom_line(aes(x = t, y = sd_05)) +
  theme_minimal() +
  labs(x = "t", y = "X_t",
       title = "Serie temporal X_t = eps_t con sd = 0.5")

Sin tendencia

  1. Paso 3: ¿cómo deberíamos de transformar los datos para poder pintar todas las series a la vez? Hazte un borrador de cómo sería el código de ggplot para dibujarlo.

La idea es que si tenemos \(p\) series, en lugar de tener \(p\) variables distintas, tengamos una serie «debajo de» otra. Por ejemplo, vamos a definir la primera y pongamos debajo al segunda otra.

n <- 1000
datos <- tibble("t" = 1:n, "X_t" = rnorm(n, mean = 0, sd = 0.5), "sd" = "sd_0.5")
datos_tidy <- 
  rbind(datos, tibble("t" = 1:n, "X_t" = rnorm(n, mean = 0, sd = 1), "sd" = "sd_1"))
datos_tidy
# A tibble: 2,000 × 3
       t     X_t sd    
   <int>   <dbl> <chr> 
 1     1  0.599  sd_0.5
 2     2  0.0233 sd_0.5
 3     3  1.12   sd_0.5
 4     4 -0.852  sd_0.5
 5     5  0.176  sd_0.5
 6     6 -0.119  sd_0.5
 7     7  0.692  sd_0.5
 8     8  1.31   sd_0.5
 9     9 -0.595  sd_0.5
10    10 -0.420  sd_0.5
# ℹ 1,990 more rows

Sin tendencia

El resto las iremos concatenando de la misma manera, añadiendo filas al datos_tidy que ya tenemos.

datos_tidy <- 
  rbind(datos_tidy, tibble("t" = 1:n, "X_t" = rnorm(n, mean = 0, sd = 2), "sd" = "sd_2"))

datos_tidy <- 
  rbind(datos_tidy, tibble("t" = 1:n, "X_t" = rnorm(n, mean = 0, sd = 4), "sd" = "sd_4"))

Lo anterior se pueda hacer más “conciso” con {tidyverse} haciendo uso de pivot_longer().

datos_tidy <-
  datos |>
  pivot_longer(cols = "sd_05":"sd_4", names_to = "sd", values_to = "X_t")

Sin tendencia

Código
ggplot(datos_tidy) +
  geom_line(aes(x = t, y = X_t, color = sd),
            alpha = 0.7) +
  ggthemes::scale_color_colorblind() +
  facet_wrap(~sd) +
  theme_minimal() +
  labs(x = "t", y = "X_t", color = "Desv. típica",
       title = "Serie temporal X_t = eps_t con distintas varianzas")

Sin tendencia

  1. Paso 4. Para automatizarlo, diseña una función tal que le introduzcas como argumento un tamaño muestral \(n\), un \(t\) y un vector de desviaciones típicas, y devuelva en formato tidy data los valores de las series temporales (tantas series como longitud tenga el vector de desviaciones)
Código
time_series_error <- function(n, t = 1:n, sd_vec = 1) {
  
  datos_tidy <- tibble()
  
  for (i in 1:length(sd_vec)) {
    
    datos_tidy <- 
      datos_tidy |>
      rbind(datos_tidy,
            tibble("t" = t, "sd" = glue::glue("sd_{sd_vec[i]}"),
                   "X_t" = rnorm(n, mean = 0, sd = sd_vec[i])))
  }
  return(datos_tidy)
}

Sin tendencia

Esta serie temporal \(X_t = \varepsilon_t\) es la más sencilla que podemos imaginar y no podemos predecirla ya que no hay ningún tipo de patrón determinístico que podamos capturar.

Código
datos <- time_series_error(n = 1000, sd = c(0.5, 1, 2, 4))
ggplot(datos) +
  geom_line(aes(x = t, y = X_t, color = sd), alpha = 0.7) +
  ggthemes::scale_color_colorblind() +
  facet_wrap(~sd) +
  theme_minimal() +
  labs(x = "t", y = "X_t", color = "Desv. típica",
       title = "Serie temporal X_t = eps_t con distintas varianzas")

Clase 4: simulación error + tendencia

Introducción al análisis descriptivo de series temporales

Con tendencia

Normalmente una serie temporal suele ser más complejo y lleva al menos incorporada una componente de tendencia o nivel \(\mu_t\) tal que

\[X_t = f \left(\mu_t, \varepsilon_t\right) =^{*} \mu_t + \varepsilon_t, \quad {\rm E} \left[X_t \right] = \mu_t\] \(*\) De momento estamos considerando una descomposición aditiva

 

Fíjate que ahora \({\rm E} \left[X_t \right] = \mu_t\) ya que la esperanza de la parte aleatoria (ruido) será asumida siempre nula: \(\mu_t\) es el nivel de la serie respecto a la que oscila en el infinito.

Con tendencia

\[X_t = f \left(\mu_t, \varepsilon_t\right) =^{*} \mu_t + \varepsilon_t, \quad {\rm E} \left[X_t \right] = \mu_t\]

Dicha tendencia \(\mu_t\) puede ser a su vez modelada en función de \(t\) y de un vector de parámetros \(\beta\) tal que \(\mu_t := f \left(t, \beta \right)\). Esa función \(f \left( \cdot \right)\) puede ser cualquier función que se te ocurre pero algunas de las tendencias más habituales son:

  • Constante: \(\mu_t = \beta = \beta_0 = cte\)

  • Lineal: \(\mu_t = \beta_0 + \beta_1 t\)

  • Polinómica (no lineal): \(\mu_t = \beta_0 + \beta_1 t + \ldots + \beta_r t^{r}\)

  • No polinómica: \(\mu_t = \sin \left(\pi t \right)\)

Con tendencia

  • Constante: \(\mu_t = \beta = \beta_0 = cte\)

\[X_t = f \left(\mu_t, \varepsilon_t\right) = \beta_0 + \varepsilon_t , \quad {\rm E} \left[X_t \right] = \beta_0, \quad \widehat{X}_{t + k} = \widehat{\beta}_0\]

Con tendencia

  • Lineal: \(\mu_t = \beta_0 + \beta_1 t\)

\[X_t = f \left(\mu_t, \varepsilon_t\right) = \beta_0 + \beta_1 t + \varepsilon_t , \quad {\rm E} \left[X_t \right] = \beta_0 + \beta_1 t \to \pm \infty, \quad \widehat{X}_{t + k} = \widehat{\beta}_0 + \widehat{\beta}_1 \left(t + k \right)\]

Con tendencia

  • Polinómica (no lineal): \(\mu_t = \beta_0 + \beta_1 t + \ldots + \beta_r t^{r}\)

\[X_t = f \left(\mu_t, \varepsilon_t\right) = \beta_0 + \beta_1 t + \ldots + \beta_r t^{r} + \varepsilon_t , \quad \widehat{X}_{t + k} = \widehat{\beta}_0 + \widehat{\beta}_1 \left(t + k \right) + \ldots + \widehat{\beta}_r \left(t + k \right)^r\]

Con tendencia

Si nuestra tendencia está definida de forma paramétrica, para la predicción de los valores en un tiempo futuro \(t + k\) simplemente necesitamos realizar la estimación del vector de parámetros \(\widehat{\beta}\). Para ello recurriremos al método de los minimos cuadrados. Por ejemplo, en el caso de tendencia polinómica

\[\widehat{\beta} = \arg \min_{\beta \in \mathbb{R}^{r+1}} \sum_{t = 0}^{T} \left(x_t - \widehat{x}_t \right)^2 = \arg \min_{\beta \in \mathbb{R}^{r+1}} \sum_{t = 0}^{T} \left(x_t - \left(\beta_0 + \beta_1 t \ldots \beta_r t^r \right) \right)^2\]

Como suele ser habitual, para encontrar el mínimo basta con derivar respecto a los parámetros e igualar a 0. Por ejemplo…

  • Constante: \(\frac{\partial \sum_{t=0}^{T} \left(x_t - \beta_0 \right)^2}{\partial \beta_0} = T \beta_0 - \sum_{t=0}^{T} x_t = 0\) -> \(\widehat{\beta}_0 = \overline{x}_{t=0, ..., T}\)

💻 Tu turno

Ejercicio 1

💻 Si aún no lo has hecho, haz una función llamada time_series_error que simule una serie temporal solo con error. Los argumentos deben ser: tamaño muestral n, un vector temporal t y la desv típica sd (debes permitir que pueda ser un vector para simular varias a la vez, ya colocadas en tidydata)

Código
time_series_error <- function(n, t = 1:n, sd_vec = 1) {
  
  datos_tidy <- tibble()
  for (i in 1:length(sd_vec)) {
    datos_tidy <- 
      datos_tidy |>
      rbind(datos_tidy,
            tibble("t" = t, "sd" = glue::glue("sd_{sd_vec[i]}"),
                   "X_t" = rnorm(n, mean = 0, sd = sd_vec[i])))
  }
  return(datos_tidy)
}
time_series_error(n = 100, sd = c(0.5, 2))

💻 Tu turno

Ejercicio 2

💻 Usando la función anterior, define time_series_trend_error() que simule una serie temporal con tendencia cte y error, con solo 4 argumentos: n, t, desviación y la constante. Usa dicha función y dibuja.

Código
time_series_trend_error <- function(n = 1000, t = 1:n, beta_0 = 0, sd = 1) {
  # modo R base
  datos <- time_series_error(n = n, t = t, sd = sd)
  datos$X_t <- datos$X_t + beta_0
  
  # modo tidyverse
  # datos <- time_series_error(n = n, t = t, sd = sd) |> mutate(X_t = X_t + trend)
  return(datos)
}

datos <- time_series_trend_error(n = 1000, beta_0 = 3, sd = 0.5)
ggplot(datos, aes(x = t, y = X_t)) +
  geom_line(alpha = 0.7) +
  geom_smooth(method = "lm", se = FALSE) +
  ggthemes::scale_color_colorblind() +
  theme_minimal() +
  labs(x = "t", y = "X_t", title = "Serie temporal X_t = mu_t + eps_t con mu_t = 3")

💻 Tu turno

Ejercicio 3

💻 Generaliza la función anterior para simular una serie temporal con error y tendencia lineal (donde antes definíamos solo una constante ahora será un vector de coeficientes). Fíjate que la línea de ajuste de ggplot es literal la estimación que haríamos si solo consideramos error + tendencia.

Código
time_series_trend_error <- function(n = 1000, t = 1:n, beta = c(1, -0.01), sd = 1) {
  
  datos <- time_series_error(n = n, t = t, sd = sd)
  datos$X_t <- datos$X_t + (beta[1] + beta[2]*datos$t)
  return(datos)
}

datos <- time_series_trend_error(n = 1000, beta = c(1, -0.01), sd = 0.5)
ggplot(datos, aes(x = t, y = X_t)) +
  geom_line(alpha = 0.7) +
  geom_smooth(method = "lm", se = FALSE) +
  ggthemes::scale_color_colorblind() +
  theme_minimal() +
  labs(x = "t", y = "X_t", title = "Serie temporal X_t = mu_t + eps_t con mu_t = 1 - 0.01*t")

Clase 5: simulación error + tendencia

Introducción al análisis descriptivo de series temporales

💻 Tu turno

Ejercicio 4

💻 Generaliza la función anterior de manera que simule una serie temporal con error y tendencia polinómica (que acepte un vector de parámetros general).

Código
time_series_trend_error <-
  function(n = 1000, t = 1:n, beta = c(1, -0.01, 0.001, -0.0001), sd = 1) {
  
  datos <- time_series_error(n = n, t = t, sd = sd)
  for (i in 1:length(beta)) {
    datos$X_t <- datos$X_t + beta[i]*(datos$t^(i - 1))
  } 
  return(datos)
}

datos <- time_series_trend_error(n = 1000, beta = c(1, 0.01, 0.000001, -0.00000001), sd = 0.5)
ggplot(datos, aes(x = t, y = X_t)) +
  geom_line(alpha = 0.7) +
  geom_smooth(formula = y ~ poly(x, 3), se = FALSE) +
  ggthemes::scale_color_colorblind() +
  theme_minimal() +
  labs(x = "t", y = "X_t", title = "Serie temporal X_t = mu_t + eps_t con mu_t cúbica")

💻 Tu turno

Ejercicio 5

💻 Diseña una función estim_ts_trend_error() que, dada una serie (un tibble de dos columnas t y X_t), nos devuelva la misma tabla pero con una tercera columna con su estimación asumiendo una tendencia polinómica (necesitamos dos argumentos: la tabla y el grado del polinomio; haz uso dentro de poly(), chequea en la ayuda de la función ? poly())

Código
estim_ts_trend_error <- function(datos, degree = 1) {
  if (degree == 0) {
    modelo <- datos |> lm(formula = X_t ~ 1)
  } else {
    modelo <- datos |> lm(formula = X_t ~ poly(t, degree, raw = TRUE))
  }
  datos$X_hat <- predict(modelo, tibble("t" = datos$t))
  return(datos)
}
datos <- time_series_trend_error(n = 1000, beta = c(1, 0.01, 0.000001, -0.00000001), sd = 0.5)
# ajustamos un modelo polinómico de tendencia
modelo <- datos |> estim_ts_trend_error(degree = 3)

Caso real: AEMET

Como ya te puedes estar imaginando, esta forma de estimar una serie temporal con un polinomio puede ser bastante imprecisa, máxime si aparece en nuestra serie una componente estacional (un patrón periódico).

Vamos a retomar por ejemplo nuestros datos de temperatura del AEMET

Código
ggplot(retiro) +
  geom_line(aes(x = fecha, y = tmed), linewidth = 0.3, alpha = 0.7) +
  theme_minimal() +
  labs(title = "Temperatura media como SERIE TEMPORAL",
       x = "t (fecha)", y = "ºC (media)")

Caso real: AEMET

💻 Aplica la función de estimación definida anteriormente a los datos reales del AEMET para incluir 3 nuevas columnas con los 3 métodos de estimación (tendencia constante, lineal y polinómica de grado 3)

retiro_estim <-
  tibble("fecha" = retiro$fecha, "t" = 1:length(fecha), "X_t" = retiro$tmed) |>
  # aplicamos función y renombramos variable de salida de la estimación
  estim_ts_trend_error(degree = 0) |> rename(X_t_hat_0 = X_hat) |>
  estim_ts_trend_error(degree = 1) |> rename(X_t_hat_1 = X_hat) |> 
  estim_ts_trend_error(degree = 3) |> rename(X_t_hat_3 = X_hat) 

Caso real: AEMET

Como observas las predicciones no son precisas cuando hay una componente estacional ya que el ajuste realizado solo se fija en una tendencia con unos coef ctes.

 

¿Se te ocurre alguna idea para mejorar?

Código
ggplot(retiro_estim |>
         pivot_longer(-c(fecha, t), names_to = "type", values_to = "pred")) +
  geom_line(aes(x = fecha, y = pred, color = type),
            linewidth = 0.4, alpha = 0.75) +
  ggthemes::scale_color_colorblind() +
  theme_minimal() +
  labs(title = "Temperatura media como SERIE TEMPORAL",
       x = "t (fecha)", y = "ºC (media)")

Clase 6:

Introducción al análisis descriptivo de series temporales

Recapitulando

Hasta ahora nos hemos centrado sobre todo en dos cosas

  • Repasar lo que supiéramos de R

  • Entender cómo simular y estimar series sencillas

  • Visualizar dichas series

Pero a partir de ahora pulsaremos un poco el acelerador (así quién tenga muchos problemas en la parte de programación, deberá empezar a usar del mail y las tutorías)

Recapitulando

¿Qué deberíamos saber hasta ahora?

  • Deberíamos tener una función ts_error() parecida a esta para simular un ruido de una varianza dada.
ts_error <- function(n, t = 1:n, sd_vec = 1) {
  
  datos_tidy <- tibble()
  for (i in 1:length(sd_vec)) {
    datos_tidy <- 
      rbind(datos_tidy,
            tibble("t" = t, "sd" = glue::glue("sd_{sd_vec[i]}"),
                   "X_t" = rnorm(n, mean = 0, sd = sd_vec[i])))
  }
  return(datos_tidy)
}
ts_error(n = 100, sd = c(0.5, 2))
# A tibble: 200 × 3
       t sd         X_t
   <int> <glue>   <dbl>
 1     1 sd_0.5  0.379 
 2     2 sd_0.5 -0.324 
 3     3 sd_0.5  0.865 
 4     4 sd_0.5  0.696 
 5     5 sd_0.5 -0.268 
 6     6 sd_0.5  0.219 
 7     7 sd_0.5 -0.0879
 8     8 sd_0.5 -0.122 
 9     9 sd_0.5 -0.396 
10    10 sd_0.5  0.286 
# ℹ 190 more rows

Recapitulando

¿Qué deberíamos saber hasta ahora?

  • Deberíamos tener una función ts_trend_error parecida a esta para simular una serie formada por tendencia polinómica más ruido, con una varianza dada y un vector de coeficientes dado.
ts_trend_error <-
  function(n = 1000, t = 1:n, beta = c(1, -0.01, 0.001, -0.0001), sd = 1) {
  
  datos <- ts_error(n = n, t = t, sd = sd)
  for (i in 1:length(beta)) {
    datos$X_t <- datos$X_t + beta[i]*(datos$t^(i - 1))
  } 
  return(datos)
}
datos <- ts_trend_error(n = 1000, beta = c(1, 0.01, 0.000001, -0.00000001), sd = 0.5)

Recapitulando

¿Qué deberíamos saber hasta ahora?

  • Deberías ser capaz de entender cómo organizar los datos de manera que podamos visualizar de manera sencilla.
ggplot(datos) +
  geom_line(aes(x = t, y = X_t),
            alpha = 0.6) +
  ggthemes::scale_color_colorblind() +
  theme_minimal() +
  labs(x = "t", y = "X_t",
       title = "Serie temporal X_t = mu_t + eps_t (mu_t cúbica)")

Recapitulando

  • Y por último deberías tener una estim_ts_trend_error() similar a esta para que, dada una serie cualquiera, con dos columnas para \(t\) y \(X_t\) (con cualquier nombre) haga la estimación. Fíjate de los argumentos tag_estim y nuevos_valores que hacen para facilitarnos la vida a futuro
estim_ts_trend_error <-
  function(datos, degree = 1, tag_estim = paste0("estim_poly_", degree),
           col_t = "t", col_X_t = "X_t", nuevos_valores = NULL) {
    
    datos <- # versión tidyverse
      datos |> select(all_of(col_t), all_of(col_X_t)) |>
      rename(t = all_of(col_t), X_t = all_of(col_X_t))
    
    # R base normal
    # datos <- datos[, c(col_t, col_X_t)]
    # names(datos)[names(datos) == col_t] <- "t"
    # names(datos)[names(datos) == col_X_t] <- "X_t"

    if (degree == 0) {
      modelo <- datos |> lm(formula = X_t ~ 1)
    } else {
      modelo <- datos |> lm(formula = X_t ~ poly(t, degree, raw = TRUE))
    }
    datos[, tag_estim] <- predict(modelo, tibble("t" = datos$t))
    
    if (!is.null(nuevos_valores)) {
      nuevos_datos <- tibble("t" = nuevos_valores, "X_t" = NA)
      nuevos_datos[, tag_estim] <- predict(modelo, tibble("t" = nuevos_datos$t))
      datos <- rbind(datos, nuevos_datos)
    }
    return(datos)
}

Caso real: AEMET

Con todo esto podemos aplicar nuestras funciones para estimar los datos reales del AEMET, estimando bajo 4 hipótesis: solo ruido, ruido + tendencia cte, ruido + tendencia lineal y ruido + tendencia polinómica de grado 3.

retiro_estim <-
  estim_ts_trend_error(retiro[, c("fecha", "tmed")], degree = 0,
                       col_t = "fecha", col_X_t = "tmed")
retiro_estim$estim_poly_1 <- 
  estim_ts_trend_error(retiro[, c("fecha", "tmed")], degree = 1,
                       col_t = "fecha", col_X_t = "tmed")$estim_poly_1
retiro_estim$estim_poly_3 <- 
  estim_ts_trend_error(retiro[, c("fecha", "tmed")], degree = 3,
                       col_t = "fecha", col_X_t = "tmed")$estim_poly_3
retiro_estim$estim_noise <- 0 # fíjate que el ruido la estimación es...0
retiro_estim_tidy <-
  retiro_estim |> 
  pivot_longer(cols = -t, names_to = "serie", values_to = "X_t")

Caso real: AEMET

Fíjate que de cada estim_ts_trend_error() solo nos interesa la propia estimación ya que t y X_t es igual siempre, así que podríamos hacer un left_join() de las diferentes tablas.

retiro_estim <-
  estim_ts_trend_error(retiro[, c("fecha", "tmed")], degree = 0,
                       col_t = "fecha", col_X_t = "tmed") |> 
  left_join(estim_ts_trend_error(retiro[, c("fecha", "tmed")], degree = 1,
                                 col_t = "fecha", col_X_t = "tmed"),
            by = c("t", "X_t")) |> 
  left_join(estim_ts_trend_error(retiro[, c("fecha", "tmed")], degree = 3,
                                 col_t = "fecha", col_X_t = "tmed"),
            by = c("t", "X_t"))
retiro_estim$estim_noise <- 0 # fíjate que el ruido la estimación es...0
retiro_estim_tidy <-
  retiro_estim |> 
  pivot_longer(cols = -t, names_to = "serie", values_to = "X_t")

Caso real: AEMET

Y también deberíamos saber ya visualizar todo

Código
ggplot(retiro_estim_tidy) +
  geom_line(aes(x = t, y = X_t, color = serie,
                linewidth = serie, alpha = serie, linetype = serie)) +
  ggthemes::scale_color_colorblind() +
  scale_alpha_manual(values = c(0.85, 0.85, 0.85, 0.85, 1)) +
  scale_linewidth_manual(values = c(1.1, 1.1, 1.1, 1.1, 0.1)) +
  scale_linetype_manual(values = c("dotted", "dotted", "dotted", "dotted", "solid")) +
  theme_minimal() +
  labs(x = "t", y = "Temperatura (ºC)", title = "Estimación serie AEMET")

Caso real: AEMET

La idea de los métodos de estimación es que podamos usarlos no solo para estimar sino también para predecir en instantes temporales futuros, haciendo uso de esos «nuevos valores» que podemos usar en estim_ts_trend_error().

Por ejemplo, en los datos tenemos solo hasta el 31 de agosto de 2024: ¿cuál es la predicción de los distintos métodos para todo el mes de septiembre, octubre y noviembre?

Caso real: AEMET

Por ejemplo, en los datos tenemos solo hasta el 31 de agosto de 2024: ¿cuál es la predicción de los distintos métodos para lo que queda de 2024 y 2025?

nuevos_valores <- seq(as_date("2024-09-01"), as_date("2025-12-31"), by = 1)

retiro_predict <-
  estim_ts_trend_error(retiro[, c("fecha", "tmed")], degree = 0,
                       col_t = "fecha", col_X_t = "tmed",
                       nuevos_valores = nuevos_valores) |> 
  left_join(estim_ts_trend_error(retiro[, c("fecha", "tmed")], degree = 1,
                                 col_t = "fecha", col_X_t = "tmed",
                                 nuevos_valores = nuevos_valores),
            by = c("t", "X_t")) |> 
  left_join(estim_ts_trend_error(retiro[, c("fecha", "tmed")], degree = 3,
                                 col_t = "fecha", col_X_t = "tmed",
                                 nuevos_valores = nuevos_valores),
            by = c("t", "X_t"))
retiro_predict$estim_noise <- 0 # fíjate que el ruido la predicción es...0

retiro_predict_tidy <-
  retiro_predict |> 
  pivot_longer(cols = -t, names_to = "serie", values_to = "X_t")

Caso real: AEMET

Código
# filtro un poco para que se vea mejor
ggplot(retiro_predict_tidy |> 
         filter(t > as_date("2015-01-01"))) +
  geom_line(aes(x = t, y = X_t, color = serie,
                linewidth = serie, alpha = serie, linetype = serie)) +
  geom_vline(xintercept = max(retiro$fecha), linetype = "twodash", color = "#a61d0f", alpha = 0.5, linewidth = 0.9) +
  ggthemes::scale_color_colorblind() +
  scale_alpha_manual(values = c(0.85, 0.85, 0.85, 0.85, 1)) +
  scale_linewidth_manual(values = c(1, 1, 1, 1, 0.2)) +
  scale_linetype_manual(values = c("dotted", "dotted", "dotted", "dotted", "solid")) +
  theme_minimal() +
  labs(x = "t", y = "Temperatura (ºC)", title = "Predicción serie AEMET")

Estacionalidad

El problema del ajuste anterior es que, amén de la parte puramente estocástica y la tendencia (más o menos compleja que pueda tener), existe una parte ESTACIONAL

Diremos que una serie tiene una componente estacional siempre que presente un patrón que se repite en periodos (aprox.) fijos en el tiempo tal que

\[X_t = f \left(\mu_t, S_t, \varepsilon_t\right) =^{adit} \mu_t + S_t + \varepsilon_t, \quad X_t =^{mult} \mu_t * S_t * \varepsilon_t\]

Trataremos de manera general con los modelos aditivos ya que, en caso de ser multiplicativo, \(\log \left(X_t\right) =\log \left( \mu_t \right) + \log \left(S_t \right) + \log \left( \varepsilon_t \right)\)

Medias móviles

Existen diferentes estrategias para tener en cuenta la estacionalidad, muchas de ellas basadas en la idea de considerar que la tendencia no es algo estático

La más famosa (y sencilla) probablemente sea la idea de suavizado de medias móviles: en lugar de suavizar la serie considerando una media global, vamos mirar la serie por una pequeña ventana donde para cada \(t\) solo observemos un pequeño trozo de la serie.

Medias móviles

Imagina que tenemos la siguiente serie

datos <- tibble("t" = 1:15,
                "x" = c(0.8, 1.3, 1.6, 1.5, 2.2, 2.3, 2.2, 2.4,
                        2, 1.5, 1.2, 1.3, 1.2, 1, 0.7))

Medias móviles

datos <- tibble("t" = 1:15,
                "x" = c(0.8, 1.3, 1.6, 1.5, 2.2, 2.3, 2.2, 2.4,
                        2, 1.5, 1.2, 1.3, 1.2, 1, 0.7))

La idea de las medias móviles es la siguiente:

  1. Decide la anchura de tu ventana (cuantos datos permites que entren), por ejemplo \(5\).
  1. Decide qué peso vas a asignar a cada uno de los puntos (por ejemplo, \(1/5\) en nuestro caso)
  1. Avanza en la serie con tu ventana en cada valor de \(t\) y centra la ventana en cada punto (si lo tenemos)

Medias móviles

\(y_1 = \color{red}{x_1}\)

\(y_2 = \frac{x_1 + \color{red}{x_2} + x_3}{3}\)

\(y_3 = \frac{x_1 + x_2 + \color{red}{x_3} + x_4 + x_5}{5}\)

\(y_4 = \frac{x_2 + x_3 + \color{red}{x_4} + x_5 + x_6}{5}\)

\(y_5 = \frac{x_3 + x_4 + \color{red}{x_5} + x_6 + x_7}{5}\)

\(y_6 = \frac{x_4 + x_5 + \color{red}{x_6} + x_7 + x_8}{5}\)

\(y_7 = \frac{x_5 + x_6 + \color{red}{x_7} + x_8 + x_9}{5}\)

En general llamaremos media móvil a la tranformación lineal

\[y_t = \sum_{r = -q}^{s} a_r x_{t+r}, \quad t = q + 1, \ldots, n-s, \quad \sum_{r = -q}^{s} a_r = 1\]

Medias móviles

\[y_t = \sum_{r = -q}^{s} a_r x_{t+r}, \quad t = q + 1, \ldots, n-s, \quad \sum_{r = -q}^{s} a_r = 1\]

La transformación es una media ponderada de \(q + s + 1\) valores donde, según avanzamos, se elimina el dato más antiguo y entra el más nuevo

  • Si los pesos son todos iguales \(a_j = \frac{1}{N}\), con \(N = q+s+1\), se conoce como media móvil de orden N.
  • Si \(q = s\) tal que \(a_{-j} = a_j\), para todo \(j=1,\ldots,q\) tal que \(k = 2*q + 1\), se conoce como k MA (moving average simétrica)
  • El problema de determinar los primeros/últimos valores se conoce como problema de los efectos terminales

Medias móviles

Para calcular una media móvil de orden \(k=2*q+1\) en R podemos hacerlo con filter() del paquete {stats} (¡cuidado!: si tienes cargado {tidyverse} debes especificar que filter() es)

k <- 3
datos$x_linear <- predict(datos |> lm(formula = x ~ t), datos)
datos$x_smooth_3ma <- stats::filter(datos$x, filter = rep(1/k, k))
datos
# A tibble: 15 × 4
       t     x x_linear x_smooth_3ma
   <int> <dbl>    <dbl>        <dbl>
 1     1   0.8     1.80       NA    
 2     2   1.3     1.76        1.23 
 3     3   1.6     1.73        1.47 
 4     4   1.5     1.69        1.77 
 5     5   2.2     1.65        2    
 6     6   2.3     1.62        2.23 
 7     7   2.2     1.58        2.3  
 8     8   2.4     1.55        2.2  
 9     9   2       1.51        1.97 
10    10   1.5     1.47        1.57 
11    11   1.2     1.44        1.33 
12    12   1.3     1.40        1.23 
13    13   1.2     1.37        1.17 
14    14   1       1.33        0.967
15    15   0.7     1.29       NA    

Medias móviles

Código
ggplot(datos |>
         pivot_longer(cols = -t, names_to = "var", values_to = "values")) +
  geom_line(aes(x = t, y = values, color = var, linetype = var),
            linewidth = 0.9, alpha = 0.75) +
  ggthemes::scale_color_colorblind() +
  theme_minimal()

Fíjate cómo ahora la curva queda suavizada pero de manera dinámica

Medias móviles

datos <-
  datos |> 
  mutate(x_smooth_5ma = stats::filter(x, filter = rep(1/5, 5)),
         x_smooth_7ma = stats::filter(x, filter = rep(1/7, 7)),
         x_smooth_9ma = stats::filter(x, filter = rep(1/9, 9)))

Fíjate que cuando aumenta \(k\), la serie es más suavizada (más agresiva con las fluctuaciones) pero hay más datos ausentes (problema de efectos terminales)

Código
ggplot(datos |>
         pivot_longer(cols = -t, names_to = "var", values_to = "values")) +
  geom_line(aes(x = t, y = values, color = var),
            linewidth = 0.9, alpha = 0.75) +
  ggthemes::scale_color_colorblind() +
  theme_minimal()

Caso real: AEMET

💻 Aplica el suavizado de medias móviles con \(k=7, 14, 28, 365\) a los datos AEMET para incluir 4 nuevas columnas con los 4 métodos de estimación

Código
# versión tidyverse (en R base tabla$variable_nueva <- valor)
retiro_estim <-
  retiro_estim |> 
  drop_na(X_t) |> 
  mutate(x_smooth_7ma = stats::filter(X_t, filter = rep(1/7, 7)),
         x_smooth_14ma = stats::filter(X_t, filter = rep(1/14, 14)),
         x_smooth_28ma = stats::filter(X_t, filter = rep(1/28, 28)),
         x_smooth_365ma = stats::filter(X_t, filter = rep(1/365, 365)))

ggplot(retiro_estim |>
         pivot_longer(-c(fecha, t), names_to = "type", values_to = "pred") |>
         filter(between(fecha, as_date("2016-01-01"), as_date("2022-01-01")))) +
  geom_line(aes(x = fecha, y = pred, color = type),
            linewidth = 0.7, alpha = 0.85) +
  ggthemes::scale_color_colorblind() +
  theme_minimal() +
  labs(title = "Temperatura media como SERIE TEMPORAL",
       x = "t (fecha)", y = "ºC (media)")

CLASE 7

Regresión local

Dado que la mayoría de veces la serie temporal no se va a poder definir mediante una tendencia fija (aunque dependa de \(t\), los coeficientes de los que dependen no varian en el tiempo), una de las alternativas es lo que se conoce como regresión local LOESS o LOWESS.

La idea de un ajuste local es ajustar a los datos una regresión polinómica (ponderada en el caso de LOWESS), de manera en cada punto el ajuste se hace utilizando una metodología de mínimos cuadrados ponderado dando más peso a los puntos cercanos al punto cuya respuesta está siendo estimando y menos peso a los puntos más lejanos.

estim_ts_trend_error <- function(datos, degree = 1, span = NULL) {
  
  if (is.null(span)) {
    if (degree == 0) {
      modelo <- datos |> lm(formula = X_t ~ 1)
    } else {
      modelo <- datos |> lm(formula = X_t ~ poly(t, degree, raw = TRUE))
    }
  } else {
    
    modelo <- datos |> loess(formula = X_t ~ t, degree = degree, span = span)
    
  }

  datos <-
    datos |> 
    mutate(X_hat = predict(modelo, tibble("t" = t)))
  
  return(datos)
}
  • medias móviles
  • ¿estacional?

siguiente clase: STL y multiplicativo

24/09/2024

27/09/2024: alisado

1/10/2024: repaso todo en R

4/10: ¿a mano? ejercicios

8/10: entrega

11/10: teoría procesos estocásticos 15/10

5-6 clases de box-jenkins

2 predicci´