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Summary

Functional Analysis of Variance (FANOVA) from Hilbert-valued correlated data with spatial rectangular or

circular supports is analyzed, when Dirichlet conditions are assumed on the boundary. Specifically, a Hilbert-

valued fixed effect model with error term defined from an Autoregressive Hilbertian process of order one (ARH(1)

process) is considered, extending the formulation given in Ruiz-Medina (2016). A new statistical test is also

derived to contrast the significance of the functional fixed effect parameters. The Dirichlet conditions established

at the boundary affect the dependence range of the correlated error term. While the rate of convergence to zero

of the eigenvalues of the covariance kernels, characterizing the Gaussian functional error components, directly

affects the stability of the generalized least-squares parameter estimation problem. A simulation study and a

real-data application related to fMRI analysis are undertaken to illustrate the performance of the parameter

estimator and statistical test derived.
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1 Introduction

In the last few decades, functional data analysis techniques have grown significantly given the new

technologies available, in particular, in the field of medicine (see, for instance, Sorensen et al. [2013]).

High–dimensional data, which are functional in nature, are generated, for example, from measurements

in time, over spatial grids or images with many pixels (e.g., data on electrical activity of the heart, data on

electrical activity along the scalp, data reconstructed from medical imaging, expression profiles in genetics
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and genomics, monitoring of continuity activity through accelerometers, etc). Effective experimental

design and modern functional statistics have led to recent advances in medical imaging, improving,

in particular, the study of human brain function (see, for example, Delzell et al. [2012]). Magnetic

Resonance Imaging (MRI) data have been analysed with different aims. For example, we refer to the

studies related with cortical thickness (see Lerch and Evans [2005]), where magnetic resonance imaging

data are analysed to detect the spatial locations of the surface of the brain, where the cortical thickness

is correlated with an independent variable, such as age or gender (see also Shaw et al. [2006]). Cortical

thickness is usually previously smoothed along the surface of the brain (see Chung et al. [2005]). Thus, it

can be considered as a functional random variable with spatial circular support. In general, the following

linear model is considered, for cortical thickness Yi(s) on subjects i = 1, . . . , n,:

Yi(s) = xiβ(s) + Zi(s)σi(s), s ∈ S, (1)

where xi is a vector of known p regressors, and for each s ∈ S, with S denoting the surface of the brain,

parameter β(s) is an unknown p–vector of regression coefficients. The errors {Z1, . . . , Zn} are independ-

ent zero-mean Gaussian random fields. In Taylor and Worsley [2007], this model is also considered to

detect how the regressors are related to the data at spatial location s, by testing contrasts in β(s), for

s ∈ S. The approach presented in this paper allows the formulation of model (1) in a functional (Hilbert–

valued) framework, incorporating possible correlations between subjects, due to genetic characteristics,

breed, geographic location, etc.

The statistical analysis of functional magnetic resonance image (fMRI) data has also generated an

important activity in research about brain activity, where the functional statistical approach implemen-

ted in this paper could lead to important spatio–temporal analysis improvements. It is well–known that

fMRI techniques have been developed to address the unobserved effect of scanner noise in studies of

the auditory cortex. A penalized likelihood approach to magnetic resonance image reconstruction is

presented in Bulaevskaya and Oehlert [2007]. A new approach which incorporates the spatial inform-

ation from neighbouring voxels, as well as temporal correlation within each voxel, which makes use of

regional kriging is derived in Christensen and Yetkin [2005]. Conditional autoregressive and Markov

random field modelling involves some restrictions in the characterization of spatially contiguous effect

regions, and, in general, in the representation of the spatial dependence between spatially connected

voxels (see, for example, Banerjee et al. [2004]; Besag [1986]). Multiscale adaptive regression models

assume spatial independence to construct a weighted likelihood parameter estimate. At each scale, the

weights determine the amount of information that observations in a neighborhood voxel provides on the

parameter vector to be estimated at a given voxel, under the assumption of independence between the

conditional distributions of the responses at the neighborhood voxels, for each scale. The weights are
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sequentially computed through different scales, for adaptively update of the parameter estimates and

test statistics (see, for example, Li et al. [2011]).

In Zhu et al. [2012], a multivariate varying coefficient model is considered for neuroimaging data,

under a mixed effect approach, to reflect dependence within–curve and between–curve, in the case where

coefficients are one–parameter functions, although extension to higher dimension is straightforward. The

approach presented in this paper adopts a functional framework to analyse multivariate varying coefficient

models in higher dimensions (two–dimensional design points), under the framework of multivariate fixed

effect models in Hilbert spaces. Namely, the response is a multivariate functional random variable

reflecting dependence within-surface (between voxels), and between-surface (between different times),

with Hilbert–valued multivariate Gaussian distribution. Hence, the varying coefficients are estimated

from the application of an extended version of generalized least–squares estimation methodology, in the

multivariate Hilbert–valued context (see Ruiz-Medina [2016]), while, in Zhu et al. [2012], local linear

regression is applied to estimate the coefficient functions. The dependence structure of the functional

response is estimated here from the moment–based parameter estimation of the ARH(1) error term (see

Bosq [2000]). In Zhu et al. [2012], local linear regression technique is employed to estimate the random

effects, reflecting dependence structure in the varying coefficient mixed effect model. An extended

formulation of the varying coefficient model considered in Zhu et al. [2012] is given in Zhu et al. [2014],

combining a univariate measurement mixed effect model, a jumping surface model, and a functional

component analysis model. In the approach presented in this paper, we have combined a nonparametric

surface model with a multivariate functional principal component approach in the ARH(1) framework.

Thus, a continuous spatial variation of the fMRI response is assumed, incorporating temporal and spatial

correlations (across voxels), with an important dimension reduction in the estimation of the varying

coefficient functions.

The above–referred advances in medicine are supported by the extensive literature on linear models

in function spaces developed in parallel in the last few decades. We particularly refer to the functional

linear regression context (see, for example, Cai and Hall [2006]; Cardot et al. [2003]; Cardot and Sarda

[2011]; Chiou et al. [2004]; Crambes et al. [2009]; Cuevas et al. [2002]; Ferraty et al. [2013]; Kokoszka et

al. [2008], among others). See also Bosq [2000, 2007]; Ruiz-Medina [2011, 2012], in the functional time

series context, and Ferraty and Vieu [2006, 2011] in the functional nonparametric regression framework.

Functional Analysis of Variance (FANOVA) techniques for high–dimensional data with a functional

background have played a crucial role, within the functional linear model literature as well. Related

work has been steadily growing (see, for example, Angelini et al. [2003]; Dette and Derbort [2001];

Gu [2002]; Huang [1998]; Kaufman and Sain [2010]; Kaziska [2011]; Lin [2000]; Ramsay and Silverman

[2005]; Spitzner et al. [2003]; Stone et al. [1997]; Wahba et al. [1995]). The paper Ruiz-Medina [2016]
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extends the results in Zoglat [2008] from the L2([0, 1])–valued context to the separable Hilbert–valued

space framework, and from the case of independent homocedastic error components to the correlated

heteroscedastic case. In the context of hypothesis testing from functional data, tests of significance based

on wavelet thresholding are formulated in Fan [1996], exploiting the sparsity of the signal representation

in the wavelet domain, for dimension reduction. A maximum likelihood ratio based test is suggested

for functional variance components in mixed–effect FANOVA models in Guo [2002]. From classical

ANOVA tests, an asymptotic approach is derived in Cuevas et al. [2004], for studying the equality of the

functional means from k independent samples of functional data. The testing problem for mixed–effect

functional analysis of variance models is addressed in Abramovich and Angelini [2006]; Abramovich et al.

[2004], developing asymptotically optimal (minimax) testing procedures for the significance of functional

global trend, and the functional fixed effects. The wavelet transform of the data is again used in the

implementation of this approach (see also Antoniadis and Sapatinas [2007]). Recently, in the context

of functional data defined by curves, considering the L2–norm, an up–to–date overview of hypothesis

testing methods for functional data analysis is provided in Zhang [2013], including functional ANOVA,

functional linear models with functional responses, heteroscedastic ANOVA for functional data, and

hypothesis tests for the equality of covariance functions, among other related topics.

In this paper, the model formulated in Ruiz-Medina [2016] is extended to the case where the error

term is an ARH(1) process. Furthermore, an alternative test to contrast the significance of the functional

fixed effect parameters is formulated, based on a sharp form of the Cramér–Wold’s Theorem derived in

Cuesta-Albertos et al. [2007], for Gaussian measures on a separable Hilbert space. The simulation

study undertaken illustrates the effect of the boundary conditions and the geometry of the domain on

the spatial dependence range of the functional vector error term. Specifically, in that simulations, we

consider the case where the Gaussian error components satisfy a stochastic partial differential equation,

given in terms of a fractional power of the Dirichlet negative Laplacian operator. The autocovariance

and cross–covariance operators of the functional error components are then defined in terms of the

eigenvectors of the Dirichlet negative Laplacian operator. The eigenvectors of the Dirichlet negative

Laplacian operator vanish continuously at the boundary, in the case of the regular domains studied (the

rectangle, disk and circular sector), with decay velocity determined by the boundary conditions and

the geometry of the domain. Thus, the boundary conditions and the geometry of the domain directly

affect the dependence range of the error components, determined by the rate of convergence to zero of

the Dirichlet negative Laplacian eigenvectors at the boundary. The influence of the truncation order is

studied as well, since the rate of convergence to zero of the eigenvalues of the spatial covariance kernels,

that define the matrix covariance operator of the error term, could affect the stability of the generalized

least–squares estimation problem addressed here. Furthermore, in the fMRI data problem considered,
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the presented functional fixed effect model, with ARH(1) error term, is fitted. In that case, the temporal

dependence range of the error term is controlled by the ARH(1) dynamics, while the spatial dependence

range is controlled by the boundary conditions. Thus, the performance of the functional least–squares

estimator and the functional significance test introduced in this paper is illustrated in both cases, the

simulation study and the real–data example considered. A comparative study with the classical approach

presented in Worsley et al. [2002] is also achieved for the fMRI data set analysed (freely available at

http://www.math.mcgill.ca/keith/fmristat/).

The outline of this paper is as follows. The functional fixed effect model with ARH(1) error term

is formulated in Appendix 2. The main results obtained on generalized least–squares estimation of the

Hilbert–valued vector of fixed effect parameters, and the functional analysis of variance are also collected

in this appendix. Linear hypothesis testing is derived in Appendix 3. The results obtained from the

simulation study undertaken are displayed in Appendix 4. Functional statistical analysis of fMRI data

is given in Appendix 5. Conclusions and open research lines are provided in Appendix 6. Finally, the

Supplementary Material in Appendix 7 introduces the required preliminary elements on eigenvectors and

eigenvalues of the Dirichlet negative Laplacian operator on the rectangle, disk and circular sector.

2 Multivariate Hilbert–valued fixed effect model with ARH(1)

error term

This section provides the extended formulation of the multivariate Hilbert–valued fixed effect model

studied in Ruiz-Medina [2016], to the case where the correlated functional components of the error term

satisfy an ARH(1) state equation. In that formulation, compactly supported non–separable autocov-

ariance and cross–covariance kernels are considered for the functional error components, extending the

separable case studied in Ruiz-Medina [2016].

Denote by H a real separable Hilbert space with the inner product 〈·, ·〉H , and the associated norm

‖ · ‖H . Let us first introduce the multivariate Hilbert–valued fixed effect model with ARH(1) error term

Y (·) = Xβ (·) + ε (·) , (2)

where X is a real-valued n× p matrix, the fixed effect design matrix,

β(·) = [β1(·), . . . , βp(·)]T ∈ Hp
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represents the vector of fixed effect parameters,

Y(·) = [Y1(·), . . . , Yn(·)]T

is the Hn-valued Gaussian response, with E {Y} = Xβ. The Hn-valued error term

ε(·) = [ε1(·), . . . , εn(·)]T

is assumed to be an ARH(1) process on the basic probability space (Ω,A,P); i.e., a stationary in time

Hilbert–valued Gaussian process satisfying (see Bosq [2000])

εm (·) = ρ (εm−1) (·) + νm (·) , m ∈ Z, (3)

where E {εm} = 0, for each m ∈ Z, and ρ denotes the autocorrelation operator of the error process ε,

which belongs to the space of bounded linear operators on H. Here, ν = {νm, m ∈ Z} is assumed to be a

Gaussian strong white noise; i.e., ν is a Hilbert–valued zero–mean stationary process, with independent

and identically distributed components in time, and with σ2 = E
{
‖νm‖2H

}
< ∞, for all m ∈ Z. Thus,

in (2), the components of the vector error term [ε1(·), . . . , εn(·)]T corresponding to observations at times

t1, . . . , tn, obey the functional state equation (3), under suitable conditions on the point spectrum of

the autocorrelation operator ρ. Hence, the non–null functional entries of the matrix covariance operator

Rεε of

ε(·) = [ε1(·), . . . , εn(·)]T

are then constituted by the elements located at the three main diagonals. Specifically,

E {εi ⊗ εj} = R1, if j − i = 1, E {εi ⊗ εj} = R∗1, if i− j = 1,

and

E {εi ⊗ εi} = R0, if i = j,

where R1 and R∗1 denote, respectively, the cross–covariance operator and its adjoint for the ARH(1)

process ε = {εi, i ∈ Z} , and R0 represents its autocovariance operator. Note that, in this appendix, it

is assumed that ρ is sufficiently regular. In particular, ρ is such that ‖ρ2‖L(H) ' 0.
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Equivalently, the matrix covariance operator Rεε is given by

Rεε = E
{

[ε1(·), . . . , εn(·)]T [ε1(·), . . . , εn(·)]
}

=


E {ε1 ⊗ ε1} . . . E {ε1 ⊗ εn}

...
. . .

...

E {εn ⊗ ε1} . . . E {εn ⊗ εn}



'



R0 R1 0H 0H . . . 0H 0H 0H

R∗1 R0 R1 0H . . . 0H 0H 0H
...

...
...

...
. . .

...
...

...

0H 0H 0H 0H . . . R∗1 R0 R1

0H 0H 0H 0H . . . 0H R∗1 R0


,

where 0H denotes the approximation by zero in the corresponding operator norm, given the conditions

imposed on ρ.

In the space H = Hn, we consider the inner product

〈f ,g〉Hn =

n∑
i=1

〈fi, gi〉H , f ,g ∈ Hn.

It is well–known that the autocovariance operator R0 of an ARH(1) process is in the trace class (see

[Bosq, 2000, pp. 27–36]). Therefore, it admits a diagonal spectral decomposition

R0 =

∞∑
k=1

λkφk ⊗ φk,

in terms of a complete orthogonal eigenvector system {φk, k ≥ 1} , defining in H a resolution of the iden-

tity

∞∑
k=1

φk ⊗ φk. Here, for each k ≥ 1, λk = λk(R0) is the k–th eigenvalue of R0, with

R0 (φk) = λk(R0)φk. The following series expansion then holds, in the mean–square sense:

εi =

∞∑
k=1

〈εi, φk〉H φk =

∞∑
k=1

√
λkηk(i)φk, i = 1, . . . , n,

where ηk(i) = 1√
λk
〈εi, φk〉H , for k ≥ 1 and i ∈ N.

The following assumption is made:

Assumption A0. The standard Gaussian random variable sequences {ηk(i), k ≥ 1, i ∈ N}, with, for

each k ≥ 1, √
λkηk(i) = 〈εi, φk〉H ,
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for every i ∈ N, satisfy the following orthogonality condition, for every i, j ∈ N,

E {ηk(i)ηp(j)} = δk,p, k, p ∈ N,

where δ denotes the Kronecker delta function, and

R1 =

∞∑
k=1

λk(R1)φk ⊗ φk, R∗1 =

∞∑
k=1

λk(R∗1)φk ⊗ φk.

Under Assumption A0, the computation of the generalized least–squares estimator of [β1(·), . . . , βp(·)]T

is achieved by projection into the orthogonal basis of eigenvectors {φk, k ≥ 1} of the autocovariance

operator R0 of the ARH(1) process ε = {εi, i ∈ Z} . Denote by Φ∗ the projection operator into the

eigenvector system {φk, k ≥ 1} , acting on a vector function f ∈ H = Hn as follows:

Φ∗ (f) = {Φ∗k (f) , k ≥ 1} =
{

(〈f1, φk〉, . . . , 〈fn, φk〉)T , k ≥ 1
}

=
{

(fk1, . . . , fkn)
T
, k ≥ 1

}
=
{
fTk , k ≥ 1

}
, (4)

where ΦΦ∗ = IdH=Hn , with

Φ
({

fTk , k ≥ 1
})

=

( ∞∑
k=1

fk1φk, . . . ,

∞∑
k=1

fknφk

)T
.

For A = {Ai,j}j=1,...,n
i=1,...,n be a matrix operator such that, for each i, j = 1, . . . , n, its functional entries

are given by

Ai,j =

∞∑
k=1

γkijφk ⊗ φk

with

∞∑
k=1

γ2kij <∞. The following identities are straightforward:

Φ∗AΦ = {Γk, k ≥ 1} , Φ ({Γk, k ≥ 1}) Φ∗ = A, (5)

where, for each k ≥ 1, the entries of Γk are Γkij = γkij , for i, j = 1, . . . , n.

Applying (4)–(5), we directly obtain
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Φ∗RεεΦ = {Λk, k ≥ 1} , Φ∗R−1εε Φ =
{
Λ−1k , k ≥ 1

}
,

R−1εε (f ,g) = Φ∗R−1εε Φ (Φ∗f ,Φ∗g) = 〈f ,g〉R−1
εε

=

∞∑
k=1

fTk Λ−1k gk, f , g ∈ R1/2
εε (Hn) ,

‖f‖2
R−1

εε
=

∞∑
k=1

fTk Λ−1k fk, f ∈ R1/2
εε (Hn) , (6)

where, for each k ≥ 1, Λk = Φ∗kRεεΦk is given by

Λk =



λk(R0) λk(R1) 0 . . . 0 0

λk(R∗1) λk(R0) λk(R1) . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . λk(R∗1) λk(R0)


, (7)

with Λ−1k denoting its inverse matrix.

Remark 1 In Appendix 4, we restrict our attention to the functional error model studied in Ruiz-Medina

[2016], considering the Hilbert–valued stochastic partial differential equation system framework. In that

framework, matrices {Λk, k ≥ 1} , are known, since they are defined from the eigenvalues of the differ-

ential operators involved in the equation system. Particularly, in that section, for each k ≥ 1, matrix Λk

is considered to have entries Λkij given by

Λkij = exp

(
− |i− j|
λki + λkj

)
, if i 6= j,

Λkii = λki = λk
(
[fi(−∆Dl

)]2
)

= λk

(
(−∆D1

)−2(d−γi)
)

= [λk ((−∆D1
))]
−2(d−γi) ,

(8)

with

γi ∈ (0, d/2), i = 1, . . . , n,

and (−∆Dl
) representing the Dirichlet negative Laplacian operator on domain Dl, for l = 1 (the rect-

angle), l = 2 (the disk) and l = 3 (the circular sector). However, in practice, as shown in Appendix

5 in the analysis of fMRI data, matrices {Λk, k ≥ 1} , are not known, and should be estimated from

the data. Indeed, in that real–data example, we approximate the entries of {Λk, k ≥ 1} , from the coef-

ficients (eigenvalues and singular values), that define the diagonal spectral expansion of the empirical
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autocovariance R̂0 and cross covariance R̂1 operators, given by (see Bosq [2000])

R̂0 =
1

n

n∑
i=1

εi ⊗ εi, R̂1 =
1

n− 1

n−1∑
i=1

εi ⊗ εi+1, R̂∗1 =
1

n− 1

n∑
i=2

εi ⊗ εi−1. (9)

We also consider here the following semi–orthogonal condition for the non-square design matrix X :

Assumption A1. The fixed effect design matrix X is a semi–orthogonal non–square matrix. That

is,

XTX = Idp, Idp ∈ Rp×p.

Remark 2 Assumption A1 implies (see Ruiz-Medina [2016])

∞∑
k=1

Tr
(
XTΛ−1k X

)−1
<∞.

The generalized least–squares estimation of [β1(·), . . . , βp(·)]T is achieved by minimizing the loss

quadratic function in the norm of the Reproducing Kernel Hilbert Space (RKHS norm). Note that, for

an H–valued zero–mean Gaussian random variable with autocovariance operator RZ , the RKHS of Z is

defined by

H (Z) = R
1/2
Z (H)

(see, for example, Prato and Zabczyk [2002]).

From equation (6) we get

E
{
‖Y −Xβ‖2

R−1
εε

}
= R−1εε (ε) (ε) =

∞∑
k=1

E
{
‖εk (βk) ‖2

Λ−1
k

}
'
∞∑
k=1

E
{
‖εk (βk) ‖2

Λ̂
−1

k

}
, (10)

where, in the last identity, for each k ≥ 1, matrix Λ̂k represents the empirical counterpart of Λk,

constructed from the eigenelements of R̂0, R̂1 and R̂1

∗
, considered when R0 and R1 are unknown. Here,

ε = Y −Xβ, εk (βk) = Φ∗k (Y −Xβ) , k ≥ 1.

The minimum of equation (10) is attached if, for each k ≥ 1, the expectation

E
{
‖εk (βk) ‖2

Λ−1
k

}

is minimized, with, as before, Λ−1k defining the inverse of matrix Λk given in (7) (and approximated by
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Λ̂k, when R0 and R1 are unknown). That is,

β̂k =
(
β̂k1, . . . , β̂kp

)T
=
(
XTΛ−1k X

)−1
XTΛ−1k Yk,

and given by (
β̃k1, . . . , β̃kp

)T
=
(
XT Λ̂

−1
k X

)−1
XT Λ̂

−1
k Yk, (11)

in the case where R0 and R1 are unknown. Here, Yk = Φ∗k (Y) is the vector of projections into φk of

the components of Y, for each k ≥ 1.

In the remaining of this section, we restrict our attention to the case where R0 and R1 are known.

In that case,

β̂ = Φ
({
β̂k, k ≥ 1

})
=

( ∞∑
k=1

β̂k1φk, . . . ,

∞∑
k=1

β̂kpφk

)T
.

The estimated response is then given by Ŷ = Xβ̂. Under Assumption A1,

E

{ ∞∑
k=1

p∑
i=1

β̂2
ki

}
=

∞∑
k=1

Tr(XTΛ−1k X)−1 + ‖β‖2Hp <∞, (12)

i.e., β̂ ∈ Hp almost surely (see Ruiz-Medina [2016] for more details).

Remark 3 In the case where R0 and R1 are unknown, under the conditions assumed in [Bosq, 2000,

Corollary 4.2, pp. 101–102], strong consistency of the empirical autocovariance operator R̂0 holds.

Moreover, under the conditions assumed in [Bosq, 2000, Theorem 4.8, pp. 116–117], the empirical

cross–covariance operator R̂0 is strongly–consistent. Therefore, the plug–in functional parameter estim-

ator (11) satisfies (12), for n sufficiently large.

The Functional Analysis of Variance of model in (2)–(3) can be achieved as described in Ruiz-Medina

[2016]. Specifically, a linear transformation of the functional data should be considered, for the almost

surely finiteness of the functional components of variance, in the following way:

WY = WXβ + Wε, (13)

where W is such that
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W =



∞∑
k=1

wk11φk ⊗ φk . . .

∞∑
k=1

wk1nφk ⊗ φk

...
. . .

...
∞∑
k=1

wkn1φk ⊗ φk . . .

∞∑
k=1

wknnφk ⊗ φk


,

and satisfies

∞∑
k=1

Tr
(
Λ−1k Wk

)
<∞. (14)

Here, for each k ≥ 1, Λk is defined in (7). The functional components of variance associated with

the transformed model (13) are then given by

S̃ST = 〈WY,WY〉R−1
εε

=

∞∑
k=1

YT
k WT

k Λ−1k WkYk,

S̃SE = 〈W
(
Y − Ŷ

)
,W

(
Y − Ŷ

)
〉R−1

εε
=

∞∑
k=1

(MkWkYk)
T

Λ−1k MkWkYk,

S̃SR = S̃ST − S̃SE.

where Mk = Idn×n −X
(
XTΛ−1k X

)−1
XTΛ−1k , for each k ≥ 1.

The statistics

F =
S̃SR

S̃SE
, (15)

provides information on the relative magnitude between the empirical variability explained by the func-

tional transformed model and the residual variability (see Appendix 4).

3 Significance test from the Cramér–Wold’s Theorem

In Ruiz-Medina [2016], a linear functional statistical test is formulated, with explicit definition of the

probability distribution of the derived functional statistics under the null hypothesis:

H0 : Kβ = C,

against

H1 : Kβ 6= C,

where C ∈ Hm and

K : Hp −→ Hm
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is a matrix operator such that its functional entries K = {Kij}j=1,...,p
i=1,...,m , are given, for each f, g ∈ H, by

Kij (f) (g) =

∞∑
k=1

λk (Kij) 〈φk, g〉H〈φk, f〉H .

In particular,

{(Φ∗kKΦk) , k ≥ 1} = {Kk, k ≥ 1}

with

Kk =


λk (K11) . . . λk (K1p)

...
. . .

...

λk (Km1) . . . λk (Kmp)

 ∈ Rm×p.

At level α, there exists a test ψ given by:

ψ =

 1 if SH0(Y) > C(H0, α),

0 otherwise,

where

SH0
(Y) =

〈
Kβ̂ −C,Kβ̂ −C

〉
H=Hn

.

The constant C(H0, α) is such that

P {SH0
(Y) > C(H0, α), Kβ = C} = 1− P {SH0

(Y) ≤ C(H0, α), Kβ = C} = 1− Fα = α,

where the probability distribution F on H = Hn has characteristic functional given in [Ruiz-Medina,

2016, Proposition 4, Eq. (66)].

Alternatively, as an application of [Cuesta-Albertos et al., 2007, Theorem 4.1], a multivariate version

of the significance test formulated in Cuesta-Albertos and Febrero-Bande [2010] is considered here, for

the fixed effect parameters (see, in particular, [Cuesta-Albertos and Febrero-Bande, 2010, Theorem 2.1].

Specifically, we consider

Hh
0 : Kβ(h) = C, (16)

for h = (h, . . . , h)Tp×1 defining a random vector in Hp, with h generated from a zero–mean Gaussian

measure µ in H, with trace covariance operator Rµ (see, for example, Prato and Zabczyk [2002]). Here,

β(h) =
(
〈β1, h〉H , . . . , 〈βp, h〉H

)T
p×1 ,
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K is given by

K =



1 −1 0 . . . 0

1 0 −1 . . . 0

...
...

...
. . .

...

1 0 0 . . . −1


∈ R(p−1)×p, (17)

and C is a null (p− 1)× 1 functional vector; i.e.,

C = (0, 0, . . . , 0)
T ∈ R(p−1)×1. (18)

From equations (17)–(18), for any (p× 1)–dimensional functional random vector

h = (h, . . . , h)Tp×1 generated from a Gaussian measure µ on H, Hh
0 can then be equivalently expressed

as

Hh
0 : 〈β1, h〉H = 〈β2, h〉H = · · · = 〈βp, h〉H . (19)

The test statistic to contrast (19) is defined as

Th =
(
Kβ̂(h)−C

)T (
KQhKT

)−1 (
Kβ̂(h)−C

)
, (20)

where K and C are respectively given in equations (17)–(18), and

Qh = (XTΛhX)−1, β̂(h) =
(
XTΛ−1h X

)−1
XTΛ−1h Y(h), (21)

with

Y(h) = (〈Y1, h〉H , . . . , 〈Yn, h〉H) .

Here, Λh is a (n× n)–dimensional matrix with entries {Λh(i, j)}j=1,...,n
i=1,...,n , given by

Λh(i, j) =

∞∑
k=1

[〈h, φk〉H ]
2
λk(Rij), i, j = 1, . . . , n,

where, as before, λk(Rij) denotes the k–th coefficient in the diagonal expansion of the covariance operator

Rij with respect to the basis {φk ⊗ φk, k ≥ 1}; i.e., in the diagonal expansion

Rij =

∞∑
k=1

λk(Rij)φk ⊗ φk, i, j = 1, . . . , n.

14



Note that in the ARH(1) error term case described in Appendix 2, from equation (7),

λk(Rij) = 0, for |i− j| > 1, k ≥ 1.

Assuming that the autocovariance and cross–covariance operator of the ARH(1) error terms are

known, under the null hypothesis Hh
0 , the conditional distribution of Th in (20), given Y = h, is a

chi–square distribution with p−1 degrees of freedom. Here, Y is a zero-mean H–valued random variable

with Gaussian probability measure µ on H, having trace covariance operator Rµ. Note that the last

assertion directly follows from the fact that, in equation (21), the conditional distribution of β̂(h) given

Y = h is

β̂(h) ∼ N (β(h),Qh),

with Qh being introduced in equation (21); i.e., the conditional distribution of β̂(h), given Y = h, is a

multivariate Gaussian distribution with mean vector β(h) and covariance matrix Qh.

From [Cuesta-Albertos et al., 2007, Theorem 4.1] and [Cuesta-Albertos and Febrero-Bande, 2010,

Theorem 2.1], if

H0 : β1(·) = β2(·) = · · · = βp(·)

fails, then, for µ-almost every function h ∈ H, Hh
0 in (16), or equivalently in (19), also fails. Thus, a

statistical test at level α to test Hh
0 is a statistical test at the same level α to test H0.

4 Simulation study

In this section, we consider the real separable Hilbert space

H = L2
0 (Dl) = C∞0 (Dl)

L2(R2)
,

the closure, in the norm of the square integrable functions in R2, of the space of infinitely differentiable

functions with compact support contained in Dl, for each l = 1, 2, 3. We restrict our attention to the

family of error covariance operators given in (8). Thus, for each i, j = 1, . . . , n,

Rεiεj = Rij = E {εi ⊗ εj} =

∞∑
k=1

(
δ∗i,j exp

(
− |i− j|
λki + λkj

)
+ δi,j

√
λkiλkj

)
φk ⊗ φk, (22)

where δ∗i,j = 1 − δi,j , and δi,j is the Kronecker delta function. As before, for each i, j = 1, . . . , n and

k ≥ 1,

λki = λk(Rii), λk(Rij) = exp

(
− |i− j|
λki + λkj

)
.
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Note that the above error covariance operator models correspond to define, for i = 1, . . . , n, the

functional Gaussian error component εi as the solution, in the mean–square sense, of the stochastic

partial differential equation

(−∆Dl
)(d−γi)εi = ξi, γi ∈ (0, d/2),

with ξi being spatial Gaussian white noise on L2(Dl), for l = 1, 2, 3.

To approximate

FMSEβ = E
{
‖β (·)− β̂ (·) ‖2Hp

}
,

ν samples are generated for the computation of

EFMSEβ =

ν∑
v=1

p∑
s=1

‖βvs (·)− β̂
v

s (·) ‖2H

ν
, (23)

the empirical functional mean–square error EFMSEβ associated with the functional estimates

{
β̂
v

s (·) =
(
β̂vs (x1, y1) , . . . , β̂vs (xL, yL)

)
, s = 1, . . . , p, v = 1, . . . , ν

}

of β, where L is the number of nodes considered in the regular grid constructed over the domains

{Dl, l = 1, 2, 3} .

Also, we will compute the following statistics:

L∞β (·) =

ν∑
v=1

(
‖ε2β,v (x1, y1) ‖∞, . . . , ‖ε2β,v (xL, yL) ‖∞

)
ν

,

where

ε2β,v (xj , yj) =
(
ε2βv

1
(xj , yj) , . . . , ε

2
βv
p

(xj , yj)
)
, j = 1, . . . , L,

and

εβv
s

(xj , yj) = βvs (xj , yj)− β̂vs (xj , yj) , s = 1, . . . , p, j = 1, . . . , L, v = 1, . . . , ν,

with ‖ · ‖∞ denoting the L∞–norm.

Let

{Yv
i (·) = (Y vi (x1, y1) , . . . , Y vi (xL, yL)) , i = 1, . . . , n, v = 1, . . . , ν}
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be the generated functional samples. The empirical approximation of

FMSEY = E
{
‖Y (·)− Ŷ (·) ‖2Hn

}
,

with FMSEY being the FMSE of Y, can be computed as follows:

EFMSEY =

ν∑
v=1

n∑
i=1

‖Yv
i (·)− Ŷv

i (·) ‖2H

ν
. (24)

Also, we will consider the statistics

L∞Y (·) =

ν∑
v=1

(
‖ε2Y,v (x1, y1) ‖∞, . . . , ‖ε2Y,v (xL, yL) ‖∞

)
ν

,

where

ε2Y,v (xj , yj) =
(
ε2Yv

1
(xj , yj) , . . . , ε

2
Yv

n
(xj , yj)

)
, εYv

i
(xj , yj) = Yv

i (xj , yj)− Ŷv
i (xj , yj) ,

for i = 1, . . . , n, j = 1, . . . , L, and v = 1, . . . , ν.

In the following numerical examples, the functional analysis of variance is implemented from a trans-

formed functional data model, considering the matrix operator W such that, for each k ≥ 1, Φ∗kW = Wk

compensates the divergence of the eigenvalues of Λ−1k . Thus, condition (14) is satisfied. Hence, for all

k ≥ 1,Wk can be defined as

Wk = ΨkΩ (Wk) ΨT
k , (25)

where Ω (Wk) = diag (ωk11, . . . , ωknn) denoting a diagonal matrix, which elements are defined by

wkii = ωi (Λk) +
1

ak
,

under
∞∑
k=1

1

ak
<∞.

We have chosen ak = k2. Here, for each k ≥ 1, Ψk denotes the projection operator into the system

{ψlk, l = 1, . . . , n} of eigenvectors of matrix Λk, and {ωi (Λk) , i = 1, . . . , n} are the associated eigenval-

ues (see Ruiz-Medina [2016]).

In practice, the infinite series defining the generalized least–squares estimator, and the functional

components of variance is truncated at TR. Specifically, in the rectangle, we work with a two–dimensional
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truncation parameter TR = TR1 × TR2, and, for circular domains, we fix a one–dimensional parameter

(the order k of Bessel functions), thus, TR1 = 1, and move the second truncation parameter associated

with the radius R (see Appendices 7.2–7.3). We then have

β̂ ' Φ
({
β̂k, k = 1, . . . , TR

})
, (26)

S̃SE '
TR∑
k=1

(MkWkYk)
T

Λ−1k MkWkYk, (27)

S̃ST '
TR∑
k=1

YT
k WT

k Λ−1k WkYk, (28)

S̃SR = S̃ST − S̃SE, (29)

Λk = ΨkΩ (Λk) ΨT
k , k = 1, . . . , TR, (30)

Wk = ΨkΩ (Wk) ΨT
k , k = 1, . . . , TR. (31)

From the transformed model (13), the finite–dimensional approximations (27)–(31) of S̃SE, S̃ST ,

and S̃SR, respectively, are computed to obtain the values of the statistics (15), reflecting the relative

magnitude between the empirical functional variability explained by the model and the residual variab-

ility.

In the computation of the test statistics Th, a truncation order is also considered in the calculation

of the elements defining matrix Λh.

In all the subsequent sections, the truncation order TR has been selected according to the following

criteria:

(i) The percentage of explained functional variance. In all the subsequent numerical examples, the

TR values considered always ensure a percentage of explained functional variance larger or equal

than 95%.

(ii) The rate of convergence to zero of the eigenvalues of the covariance operators, defining the func-

tional entries of the matrix covariance operator of the Hn–valued error term. Specifically, in the

simulation study undertaken, according to the asymptotic order (rate of convergence to zero) of

such eigenvalues, we have selected the optimal TR to remove divergence of the spectra of the

corresponding inverse covariance operators.

(iii) The functional form of the eigenvectors, depending on the geometry of the domain and the Di-

richlet conditions on the boundary. Small truncation orders or values of TR are considered, when

fast decay velocity to zero is displayed at the boundary, by the common eigenvectors of the auto-
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covariance operators of the error components, since, in that case, the error dependence range is

shorter.

Summarizing, lower truncation orders are required when a fast decay velocity to zero is displayed by

the covariance kernel eigenvalues, since a sufficient percentage of explained variability is achieved with a

few terms. Note that larger truncation orders can lead to a ill–posed nature of the functional parameter

estimation problem, and associated response plug-in prediction. In the subsequent sections, applying

criteria (i)–(iii), a smaller number of terms is required in circular domains than in rectangular domains.

4.1 Rectangular domain

The Hn–valued zero–mean Gaussian error term is generated from the matrix covariance operator

Rεε, whose functional entries
{
Rεiεj

}j=1,...,n

i=1,...,n
, are defined in equation (22), with for i = 1, . . . , n,

λki = λk(Rii) being given in equations (8) and (36). Specifically, {φk, k ≥ 1} are the eigenvectors

of the Dirichlet negative Laplacian operator on the rectangle, associated with the eigenvalues of such an

operator (see equation (36) in the Supplementary Material in Appendix 7), arranged in decreasing order

of their modulus magnitude.

Let us now define the scenarios studied for the rectangular domain

D1 =

2∏
i=1

[ai, bi] ,

where ν = 20 functional samples of size n = 200 have been considered, for a given semi–orthogonal

design matrix

X ∈ Rn×p, XTX = Idp.

These scenarios are determined from the possible values of the vector variable (Pi, u, Ci), where Pi

refers to the number of components of β, specifically, for i = 1, p = 4 components, and for i = 2,

p = 9 components. Here, u takes the values a, b, c, d respectively corresponding to the truncation orders

TR = 16 (u = a), TR = 36 (u = b), TR = 64 (u = c) and TR = 144 (u = d). In addition, {Ci, i = 1, 2}

indicate the shape of β. Specifically, we have considered

• βs (x, y) = sin
(
πsxb1

l1

)
sin
(
πsyb2
l2

)
(C1)

• βs (x, y) = cos
(
xb1

+xa1

l1

)
cos
(
yb2+ya2

l2

)
(C2),

where

xb1 =
π

2
(2s+ 1) (b1 − x) , xa1 = (x− a1) , yb2 =

π

2
(2s+ 1) (b2 − y) , ya2 = (y − a2)
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and s = 1, . . . , p.

A summary of the generated and analysed scenarios are displayed in Table 1 below.

Table 1: Scenarios for rectangular domain.

Cases a1 = a2 b1 = b2 hx = hy p TR

(P1,a,C1) −2 3 0.05 4 4× 4

(P1,b,C2) −2 3 0.05 4 6× 6

(P1,c,C2) −2 3 0.05 4 8× 8

(P1,d,C1) −2 3 0.05 4 12× 12

(P2,a,C2) −2 3 0.05 9 4× 4

(P2,b,C1) −2 3 0.05 9 6× 6

(P2,c,C1) −2 3 0.05 9 8× 8

(P2,d,C2) −2 3 0.05 9 12× 12

In Table 1, hx and hy refer to the discretization step size at each dimension. In the cases (P1,a,C1)

and (P2,a,C2), a generation of a functional value (surface) of the response is respectively represented in

Figures 1–2.

Figure 1: Case (P1,a,C1). Simulated response with p = 4, TR = 16 and β of type C1.
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Figure 2: Case (P2,a,C2). Simulated response with p = 9, TR = 16 and β of type C2.

Figures 3–4 below show the respective functional estimates Ŷ = Xβ̂ of the responses displayed in

Figures 1–2 above.

Figure 3: Case (P1,a,C1). Estimated response with p = 4, TR = 16 and β of type C1.
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Figure 4: Case (P2,a,C2). Estimated response with p = 9, TR = 16 and β of type C2.

The statistics (23)–(24) are evaluated in all the cases displayed in Table 1 (see Tables 2–3 for the

statistics L∞β and L∞Y , respectively).

Table 2: EFMSEβ for rectangular domain.

EFMSEβ

(P1,a,C1) (P1,b,C2) (P1,c,C2) (P1,d,C2)

1.070 (10)−3 1.060 (10)−3 1.040 (10)−3 1.040 (10)−3

(P2,a,C2) (P2,b,C1) (P2,c,C1) (P2,d,C2)

9.400 (10)−4 9.300 (10)−4 9.300 (10)−4 9.100 (10)−4

Table 3: EFMSEY for rectangular domain.

EFMSEY

(P1,a,C1) (P1,b,C2) (P1,c,C2) (P1,d,C2) (P2,a,C2) (P2,b,C1) (P2,c,C1) (P2,d,C2)

0.014 0.013 0.010 0.009 0.011 0.011 0.009 0.007

As expected, the results displayed in Table 2, corresponding to the empirical functional mean

quadratic errors associated with the estimation of β, are less than the ones obtained in Table 3 for

the response, with order of magnitude 10−3 in all the scenarios generated. In Table 3, we can appreciate

a better performance of the generalized least–squares estimator for the higher truncation orders. How-

ever, we have to note that, even for the smallest truncation order considered; i.e., for TR = 4× 4 = 16,

a good performance is observed with associated empirical functional mean quadratic errors having order

of magnitude 10−2 in all the cases displayed in Table 1 (see the above truncation order criteria (i)–(iii)).

It can also be observed that the number of components of parameter β, and their functional shapes
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do not affect the accuracy of the least–squares generalized estimations of the functional values of the

response. It can also be observed that the number of components of parameter β, and their functional

shapes do not affect the accuracy of the least–squares generalized estimations of the functional values of

the response.

The statistics (15) is now computed, as an empirical approximation of the relative magnitude between

the explained functional variability and the residual variability, after fitting the transformed Hilbert–

valued fixed effect model (13). The results obtained are given in Table 4. It can be observed that, in

all the cases studied, the explained functional variability exceeds the residual functional variability. The

truncation order, the number of components of β, and the functional shape of such components do not

substantially affect the goodness of fit of the transformed Hilbert–valued fixed effect model in (13).

Table 4: F statistics (15) for rectangular domain.

Cases (P1,a,C1) (P1,b,C2) (P1,c,C2) (P1,d,C1) (P2,a,C2) (P2,b,C1) (P2,c,C1) (P2,d,C2)

F 1.926 1.717 1.673 1.626 1.898 1.845 1.761 1.606

Let us now compute the statistics Th in (20) to contrast the significance of parameter vector β in

Case C1, when p = 4. To apply [Cuesta-Albertos et al., 2007, Theorem 4.1] and [Cuesta-Albertos and

Febrero-Bande, 2010, Theorem 2.1], we have generated eight realizations of a Gaussian random function

h, from the trajectories of the Gaussian random field ξ, solution, in the mean–square sense, of the

following boundary value problem:

(−∆)ξ(x) = ς(x), x = (x1, x2) ∈ [−2, 3]× [−2, 3],

ξ(−2, x2) = ξ(3, x2) = ξ(x1,−2) = ξ(x1, 3) = 0, x1, x2 ∈ [−2, 3]× [−2, 3],

(32)

where ς denotes a zero–mean Gaussian white noise on L2([−2, 3]× [−2, 3]); i.e., a zero–mean generalized

Gaussian process satisfying

∫
[−2,3]×[−2,3]

f(x)E {ς(y)ς(x)} dx = f(y), y ∈ [−2, 3]× [−2, 3], ∀f ∈ L2([−2, 3]× [−2, 3]).

Table 5 below reflects the percentage of successes, for α = 0.05, and the averaged p–values over the

150 samples of the response generated with parameter β of C1 type having p = 4 components, and with

23



size n = 150, for TR = 4× 4.

Table 5: Rectangle. Percentage of successes for α = 0.05, at the left–hand side, and averaged p–values at the
right–hand side, for each one of the eight realizations considered of the Gaussian function h ∈ L2([−2, 3]×[−2, 3]).

D % Success p

1 100% 0

2 100% 0

3 99.75% 1.998(10)−8

4 100% 0

5 99.8% 7.541(10)−7

6 100% 0

7 100% 0

8 100% 6.441(10)−10

A high percentage of successes and very small p–values are observed in Table 5; i.e., a good perform-

ance of the test statistics is observed.

4.2 Disk domain

In the disk domain

D2 =
{
x ∈ R2 : 0 < ‖x‖ < R

}
,

the zero–mean Gaussian Hn–valued error term is generated from the matrix covariance operator Rεε,

whose functional entries are defined in equation (22), considering the eigenvectors {φk, k ≥ 1} of the

Dirichlet negative Laplacian operator on the disk (see equation (37) in the Supplementary Material in

Appendix 7), arranged in decreasing order of the modulus magnitude of their associated eigenvalues.

Specifically, for i = 1, . . . , n, λki = λk(Rii) in (22) is defined in equations (8) and (37). Again, ν = 20

functional samples of size n = 200 of the response have been generated. The cases studied are summarized

in terms of the vector (Pi, u, Cj), i = 1, 2, j = 1, 2, 3, with variable u = a, b, c, d, e, f. Namely, it is

considered u = a for TR = 3, u = b for TR = 5, u = c for TR = 7, u = d for TR = 15, u = e for

TR = 31, and u = f for TR = 79. Furthermore, Pi indicates the number of components of β, with p = 4

for i = 1, and p = 9 for i = 2. Finally, the values of Cj , j = 1, 2, 3, refer to the shape of the components

of β, defined from their projections, in terms of the following equations:
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βks =
(−1)

s

k3.5
e(

k
TR )

7.5+2s−1

P (s, k)
2.5+2s−1

+ e(
k

TR )
6.5+2s−1

P (s, k)
3.5+2s−1

, k = 1, . . . , TR, s = 1, . . . , p (C1)

βks =
1

R
e

s+ k
R

n + k cos

(
(−1)

k
2π
R

k

)
, k = 1, . . . , TR, s = 1, . . . , p (C2)

βks =
1

k2.5+2s−1P (s, k)
1.5+2s−1

, k = 1, . . . , TR, s = 1, . . . , p (C3)

P (s, k) = 1 +

(
k

TR

)2

+

(
TR− k + 1

TR

)4

, k = 1, . . . , TR, s = 1, . . . , p.

Table 6 reflects a summary with all the cases analysed.

Table 6: Scenarios for disk domain.

Cases R hR hφ TR p

(P1,a,C3) 12 R
145

2π
135

3 4

(P1,b,C2) 18 R
145

2π
135

5 4

(P1,c,C1) 25 R
145

2π
135

7 4

(P1,d,C1) 50 R
145

2π
135

15 4

(P1,e,C2) 100 R
145

2π
135

31 4

(P1,f,C3) 250 R
145

2π
135

79 4

(P2,a,C1) 12 R
145

2π
135

3 9

(P2,b,C2) 18 R
145

2π
135

5 9

(P2,c,C3) 25 R
145

2π
135

7 9

(P2,d,C3) 50 R
145

2π
135

15 9

(P2,e,C2) 100 R
145

2π
135

31 9

(P2,f,C1) 250 R
145

2π
135

79 9

Figures 5–6 respectively reflect the generation of a functional value of the response in the cases

(P1,c,C1) and (P1,f,C3).
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Figure 5: Case (P1,c,C1). Simulated response with p = 4, R = 25 and β of type C1.

Figure 6: Case (P1,f,C3). Simulated response with p = 4, R = 250 and β of type C3.

The respective generalized least–squares functional estimates are displayed in Figures 7–8.

Figure 7: Case (P1,c,C1). Estimated response with p = 4, R = 25 and β of type C1.
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Figure 8: Case (P1,f,C3). Estimated response with p = 4, R = 250 and β of type C3.

The empirical functional mean quadratic errors (see equations (23)–(24)) are displayed in Table 7, for

the estimation of the functional parameter vector β, and in Table 8 for the estimation of the response Y.

It can be observed, as in the rectangular domain, that the order of magnitude of the empirical functional

mean quadratic errors associated with the estimation of β is of order 10−3, and for the estimation of the

response is 10−2. However, the number of terms considered is less than in the case of the rectangle; i.e.,

a finite dimensional space with lower dimension than in the rectangle is required, according to criterion

(iii) reflected in Appendix 4. It can also be appreciated that the number of components of β does not

substantially affect the accuracy of the estimates.

Table 7: EFMSEβ for disk domain.

EFMSEβ

(P1,a,C3) (P1,b,C2) (P1,c,C1)

7.500 (10)−4 7.500 (10)−4 7.400 (10)−4

(P1,d,C1) (P1,e,C2) (P1,f,C3)

7.500 (10)−4 7.600 (10)−4 7.500 (10)−4

(P2,a,C1) (P2,b,C2) (P2,c,C3)

7.000 (10)−4 7.100 (10)−4 7.100 (10)−4

(P2,d,C3) (P2,e,C2) (P2,f,C1)

7.900 (10)−4 8.000 (10)−4 8.000 (10)−4
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Table 8: EFMSEY for disk domain.

EFMSEY

(P1,a,C3) (P1,b,C2) (P1,c,C1) (P1,d,C1) (P1,e,C2) (P1,f,C3)

0.048 0.048 0.048 0.048 0.048 0.048

(P2,a,C1) (P2,b,C2) (P2,c,C3) (P2,d,C3) (P2,e,C2) (P2,f,C1)

0.050 0.050 0.050 0.049 0.050 0.050

The statistics (15) is now computed (see Table 9), as an empirical approximation of the relative

magnitude between the explained functional variability and the residual variability, after fitting the

transformed Hilbert-valued fixed effect model (13). It can be noticed that the values of S̃SR

S̃ST
are very

close to one in all the scenarios analysed. This fact induces large values of (15) (see Table 9), since

F =
S̃SR

S̃SE
=

S̃SR/S̃ST

1− S̃SR/S̃ST
.

It can be observed, one time more, from criterion (iii), reflected in Appendix 4, that the boundary

conditions and the geometry of the domain allows in this case a more substantial dimension reduction

than in the rectangular domain case, since with lower truncation orders a better model fitting is obtained.

Table 9: F statistics (15) over the disk domain.

Cases (P1,a,C3) (P1,b,C2) (P1,c,C1)

F 1.100(102) 4.100(103) 1.200(105)

Cases (P1,d,C1) (P1,e,C2) (P1,f,C3)

F 3.900(106) 6.300(106) 4.200(106)

Cases (P2,a,C1) (P2,b,C2) (P2,c,C3)

F 2.200(103) 8.200(103) 7.600(107)

Cases (P2,d,C3) (P2,e,C2) (P2,f,C1)

F 2.500(107) 1.400(107) 8.500(107)

The statistics Th in (20) is computed to contrast the significance of the parameter vector β in case

C1, with p = 4 components. Again, eight realizations of Gaussian random functions h are considered,

generated from a Gaussian random field ξ, solution, in the mean–square sense, of the following boundary

value problem on the disk:
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(−∆)ξ(x) = ς(x), x = (x1, x2) ∈ D25 = {x ∈ R2; 0 < ‖x‖ < 25},

ξ(θ, 25) = 0, ∀θ ∈ [0, 2π]

where ς denotes a zero–mean Gaussian white noise on L2(D25); i.e., a zero–mean generalized Gaussian

process satisfying

∫
[0,2π]×[0,25]

f(ϕ, v)E {ς(θ, r)ς(ϕ, v)} dϕdv = f(θ, r), (θ, r) ∈ [0, 2π]× [0, 25], f ∈ L2(D25).

Table 10 reflects the percentage of successes, for α = 0.05, and the averaged p–values over the 150

samples, generated with size n = 150, of the functional response having parameter vector β of type C1

with p = 4 components, for TR = 7.

Table 10: Disk. Percentage of successes for α = 0.05, at the left–hand side, and averaged p–values at the
right–hand side, for each one of the eight realizations of the Gaussian function h ∈ L2(D25).

D % Success p

1 99.95% 1.672(10)−8

2 99.5% 9.746(10)−7

3 100% 0

4 99.9% 8.546(10)−8

5 97.45% 7.400(10)−7

6 100% 0

7 100% 8.775(10)−9

8 100% 0

Table 10 again illustrates a good performance of the statistics Th in (20). Indeed, we can appreciate

a high percentage of successes, and very small p–values, very close to zero, that support the significance

of the functional parameter vector, considered in the generation of the data set analysed.

4.3 Circular sector domain

In the circular sector

D3 = {(r cos (ϕ) , r sin (ϕ)) : 0 < ‖r‖ < R, 0 < ϕ < πθ}
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of radius R and angle πθ, the zero-mean Gaussian vector error term is generated from the matrix

covariance operatorRεε, whose functional entries are defined in equation (22). The eigenvectors {φk, k ≥

1} of the Dirichlet negative Laplacian operator on the circular sector are considered (see equation (39)

in the Supplementary Material in Appendix 7), arranged in decreasing order of the modulus magnitude

of their associated eigenvalues. Specifically, here, Rεε is defined in equation (22), with for i = 1, . . . , n,

λki = λk(Rii) being given in equations (8) and (39).

As in the above examples, ν = 20 functional samples of size n = 200 are generated. The cases

studied are also summarized in terms of the values of the vector (Pi, u, Cj), i = 1, 2, u = a, b, c, d, e, f,

and j = 1, 2, 3, with the values of u having the same meaning as in the disk domain. Again, values of Pi

provide the number p of components of β; i.e., p = 4 if i = 1, and p = 9 if i = 2. The values C1, C2 and

C3 respectively correspond to the following functions defining the components of β, whose projections

are given by:

βsk = 1 + (k − 1)s, k = 1, . . . , TR, s = 1, . . . , p (C1)

βsk =
1

R
e

s+ k
R

n + k cos

(
(−1)

k
2π
R

k

)
, k = 1, . . . , TR, s = 1, . . . , p (C2)

βsk = cos

(
π
TR− k

k

)
cos

(
π
p− s
s

)
, k = 1, . . . , TR, s = 1, . . . , p (C3).

A summary of the cases analysed is given in Table 11.

Table 11: Scenarios for circular sector domain.

Cases R hR hφ TR θ p

(P1,a,C3) 12 R
145

2π
115

3 2
3

4

(P1,b,C2) 18 R
145

2π
115

5 2
3

4

(P1,c,C1) 25 R
145

2π
115

7 2
3

4

(P1,d,C1) 50 R
145

2π
115

15 2
3

4

(P1,e,C2) 100 R
145

2π
115

31 2
3

4

(P1,f,C3) 250 R
145

2π
115

79 2
3

4

(P2,a,C1) 12 R
145

2π
115

3 2
3

9

(P2,b,C2) 18 R
145

2π
115

5 2
3

9

(P2,c,C3) 25 R
145

2π
115

7 2
3

9

(P2,d,C3) 50 R
145

2π
115

15 2
3

9

(P2,e,C2) 100 R
145

2π
115

31 2
3

9

(P2,f,C1) 250 R
145

2π
115

79 2
3

9
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Figures 9–10 display the generation of a functional value of the response in the cases (P2,e,C2) and

(P1,f,C3), respectively.

Figure 9: Case (P2,e,C2). Simulated response with p = 9, R = 100 and β of type C2.

Figure 10: Case (P1,f,C3). Simulated response with p = 4, R = 250 and β of type C3.

The functional estimates obtained from the finite–dimensional approximation of the generalized least–

squares estimator of β are now given in Figures 11–12, for the cases (P2,e,C2) and (P1,f,C3), respectively.
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Figure 11: Case (P2,e,C2). Estimated response with p = 9, R = 100 and β of type C2.

Figure 12: Case (P1,f,C3). Estimated response with p = 4, R = 250 and β of type C3.

As in the previous sections, the empirical functional mean quadratic errors, associated with the

estimation of β and Y, are computed from equations (23)–(24). They are shown in Table 12, for β, and

in Table 13, for Y.

These empirical functional mean quadratic errors are very stable through the different cases con-

sidered, and their order of magnitude is again 10−3 for the parameter β, and 10−2 for the response.

Here, the results displayed also correspond to the projection into lower finite–dimensional spaces than

in the case of the rectangle, according to the functional form of the eigenvectors (see truncation order

criterion (iii) in Appendix 4).
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Table 12: EFMSEβ for the circular sector.

EFMSEβ

(P1,a,C3) (P1,b,C2) (P1,c,C1)

1.200 (10)−4 1.100 (10)−4 1.200 (10)−4

(P1,d,C1) (P1,e,C2) (P1,f,C3)

1.200 (10)−4 1.200 (10)−4 1.100 (10)−4

(P2,a,C1) (P2,b,C2) (P2,c,C3)

1.900 (10)−4 2.000 (10)−4 2.000 (10)−4

(P2,d,C3) (P2,e,C2) (P2,f,C1)

1.900 (10)−4 1.900 (10)−4 2.000 (10)−4

Table 13: EFMSEY for the circular sector.

EFMSEY

(P1,a,C3) (P1,b,C2) (P1,c,C1)

8.770 (10)−3 8.810 (10)−3 8.820 (10)−3

(P1,d,C1) (P1,e,C2) (P1,f,C3)

8.820 (10)−3 8.820 (10)−3 8.810 (10)−3

(P2,a,C1) (P2,b,C2) (P2,c,C3)

9.630 (10)−3 9.670 (10)−3 9.670 (10)−3

(P2,d,C3) (P2,e,C2) (P2,f,C1)

9.670 (10)−3 9.680 (10)−3 9.660 (10)−3

Statistics (15) is now computed. Its values are displayed in Table 14. Again, as in the disk, the

proportion of explained functional variability is very close to one leading to large values of statistics

(15), as it can be observed in Table 14 for all the cases analysed.

Table 14: F statistics (15) for the circular sector.

Cases (P1,a,C3) (P1,b,C2) (P1,c,C1) (P1,d,C1) (P1,e,C2) (P1,f,C3)

F 9.2(102) 3.1(103) 4.2(106) 4.8(108) 5.8(106)) 7.3(108)

Cases (P2,a,C1) (P2,b,C2) (P2,c,C3) (P2,d,C3) (P2,e,C2) (P2,f,C1)

F 1.8(103) 4.1(103) 2.6(107) 3.1(109) 6.8(106) 1.8(109)

The statistics Th in (20) is computed to contrast the significance of the parameter vector β in case C1

with p = 4 functional components. Eight realizations of a Gaussian random function h are considered
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from a Gaussian random field ξ, solution, in the mean-square sense, of the following boundary value

problem on the circular sector

(−∆)ξ(x) = ς(x), x = (r cos (ϕ) , r sin (ϕ)) , 0 < ‖r‖ < R, 0 < ϕ < πθ,

ξ(ϕ, 25) = 0, ϕ ∈ [0, πθ],

where θ = 2/3, ς denotes a zero–mean Gaussian white noise on the circular sector such that

∫
[0,πθ]×[0,25]

f(ϕ, v)E {ς(γ, r)ς(ϕ, v)} dϕdv = f(γ, r), (γ, r) ∈ [0, πθ]× [0, 25], f ∈ L2(CS),

with L2(CS) denoting the space of square–integrable functions on the circular sector. Table 15 reflects

the percentage of successes, for α = 0.05, and the averaged p–values over the 150 samples, with size

n = 150, of the response, having C1–type functional parameter vector β with p = 4 components,

considering TR = 7.

Table 15: Circular Sector. Percentage of successes for α = 0.05, at the left–hand side, and averaged p–values
at the right–hand side, for each one of the eight realizations of the Gaussian function h ∈ L2(CS).

D % Success p

1 97.5% 6.504(10)−6

2 100% 0

3 100% 3.600(10)−8

4 100% 0

5 98% 2.006(10)−6

6 99.5% 9.807(10)−8

7 100% 0

8 99.5% 4.111(10)−7

Table 15 again confirms the good performance of the test statistics Th, showing a high percentage

of successes, and very small magnitudes for the averaged p–value (almost zero values), according to the

significance of the parameter vector β considered in the generation of the analysed functional data set.

5 Functional statistical analysis of fMRI data

In this section, we compare the results obtained from the application of the MatLab function fmrilm.m

(see Liao et al. [2012] and Worsley et al. [2002]) from fmristat.m function set (available at http://www.

math.mcgill.ca/keith/fmristat), with those ones provided by the implementation of our proposed
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functional statistical methodology, based on the Hilbert-valued fixed effect models with ARH(1) error

term above introduced. The fMRI data set analysed is also freely available in AFNI format at http:

//www.math.mcgill.ca/keith/fmristat/. (AFNI Matlab toolbox can be applied to read such a data

set). In the next section, structural information about such fMRI data is provided (see BrikInfo.m

Matlab function).

The first step in the statistical analysis of fMRI data is to modeling the data response to an external

stimulus. Specifically, at each voxel, denote by x(t) the (noise-free) fMRI response at time t, and by

s(t) the external stimulus at that time. It is well–known that the corresponding fMRI response is not

instantaneous, suffering a blurring and a delay of the peak response by about 6s (see, for example, Liao

et al. [2012]). This fact is usually modelled by assuming that the fMRI response depends on the external

stimulus by convolution with a hemodynamic response function h(t) (which is usually assumed to be

independent of the voxel), as follows:

x(t) =

∫ ∞
0

h(u)s(t− u)du. (33)

Several models have been proposed in the literature for the hemodynamic response function (hrf).

For example, the gamma function (see Lange and Zeger [1997]), or the difference of two gamma functions,

to model the slight intensity dip after the response has fallen back to zero (see Friston et al. [1998]).

The effects (xi,1, . . . , xi,p) of p different types of stimuli on data, in scan i, is combined in terms of an

additive model with different multiplicative coefficients (β1, . . . , βp) that vary from voxel to voxel. The

combined fMRI response is then modeled as the linear model (see Friston et al. [1995])

xi,1β1(v) + · · ·+ xi,pβp(v),

for each voxel v.

An important drift over time can be observed in fMRI time series data in some voxels. Such a drift

is usually linear, or a more general slow variation function. In the first case, i.e., for a linear function

xi,k+1βk+1(v) + · · ·+ xi,m(v)βm(v),

when the drift is not removed, it can be confounded with the fMRI response. Otherwise, it can be added

to the estimate of the random noise ε, which, in the simplest case is assumed to be an AR(1) process at

each voxel. In that case, the linear model fitted to the observed fMRI data is usually given by

Yi(v) = xi,1β1(v) + · · ·+ xi,pβp(v) + xi,k+1βk+1(v) + · · ·+ xi,mβm(v) + εi(v), i = 1, . . . , n, (34)
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for each one of the voxels v, in the real–valued approach presented in Worsley et al. [2002]. In (34),

εi(v) = ρ(v)εi−1(v) + ξi(v), |ρ(v)| < 1,

where {ξi(v), i = 1, . . . , n} are n random components of Gaussian white noise in time, for each voxel

v. This temporal correlation structure for the noise has sense, under the assumption that the scans

are equally spaced in time, and that the error from the previous scan is combined with fresh noise to

produce the error for the current scan. In the presented Hilbert–valued approach, a similar reasoning

can be applied to arrive to the fixed effect model with ARH(1) error term, introduced in Appendix 2.

This model allows the representation of fMRI data in a functional spatially continuous form. Specifically,

for the scan i, a continuous spatial variation is assumed underlying to the values of the noise across the

voxels, reflected in the functional value of the ARH(1) process, representing the error term. In the same

way, the H–valued components of the parameter vector β(·) provide a continuous model to represent

spatial variation over the voxels of the multiplicative coefficients β1(·), . . . , βp(·), independently of time.

Since the fMRI response is subsampled at the n scan acquisition times t1, . . . , tn, the fixed effect design

matrix X, constituted by the values of the fMRI response (33) at such times, under the p different types

of stimuli considered, has dimension n×p. Note that in (33) x is assumed to be independent of the voxel,

according to the definition of the hrf.

5.1 Description of the data set and the fixed effect design matrix

Brain scan measurements are represented on a set of 64 × 64 × 16 voxels. Each one of such voxels

represents a cube of 3.75× 3.75× 7 mm. At each one of the 16 depth levels or slices {Si, i = 1, . . . , 16},

the brain is scanned in 68 frames, {Frh, h = 1, . . . , 68}. Equivalently, for i = 1, . . . , 16, on the slice Si,

a 64× 64 rectangular grid is considered, where measurements at each one of the 68 frames are collected.

We restrict our attention to the case p = 2, where two type of events are considered, respectively

representing scans hot stimulus (with a height hh) and scans warm stimulus (with a height hw). The

default parameters, chosen by Glover [1999], to generate the hrf as the difference of two gamma densities

is the row vector r = [5.4, 5.2, 10.8, 7.35, 0.35], where the first and third parameters represent the time to

peak of the first and second gamma densities (Γ1 and Γ2), respectively; the second and fourth parameters

represent the approximate full width at half maximum (FWHM) of the first and second gamma densities,

respectively; and the fifth parameter (called also DIP ) denotes the coefficient of the second gamma

density, for more details, see Glover [1999], about modelling the hrf as the difference of two gamma
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density functions, in the following way:

hrf =
Γ1

max(Γ1)
−DIP

(
Γ2

max(Γ2)

)
.

Considering TRt = 5 seconds as the temporal step between each frame Frh, h = 1, . . . , 68, in which

all slices are scanned, frame times will be Frtimes = (0, 5, 10, . . . , 330, 335) (see Figure 13). Remark

that, for any of the 68 scans, separated by TRt = 5 seconds, keeping in mind that the first 4 frames are

removed, 16 slices {Si, i = 1, . . . , 16}, are interleaved every 0.3125 seconds, approximately.

Figure 13: hrf model in Glover [1999] (without convoluting) obtained by fmridesign.m Matlab function, for
slices Si, with i = 1 (top) and i = 10 (bottom), until frame time Frtimes = 150 (i.e., the Glover’s hrf continues
to be zero).

The events matrix E, which will be convoluted with the hrf, is a matrix whose rows are the events,

and whose columns are the identifier of the event type, the starting event time, the duration of the event,

and the height of the response for the event, respectively. In our example, we have considered a block

design of 4 scans rest, 4 scans hot stimulus, 4 scans rest, 4 scans warm stimulus, repeating 4 times this

block with 4 last scans rest (68 scans total). As noted before, we remove the first 4 frames. The hot

event is identified by 1 and the warm event by 2, such that hh = 0.5 and hw = 1. Event times, for

hot and warm stimulus, will be [20, 60, . . . , 260, 300], since there are 8 frames between the beginning of

events (4 frames for the previous event and 4 frames rest). Then, our events matrix E considered is
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E =



1 20 5 0.5

2 60 5 1

1 100 5 0.5

2 140 5 1

1 180 5 0.5

2 220 5 1

1 260 5 0.5

2 300 5 1



. (35)

Convolution of matrix E, in (35), with the hrf leads to the set of real–valued 64× 2 design matrices

{Xi, i = 1, . . . , 16} , Xi ∈ R64×2,

implemented by fmridesgin.m Matlab function (see Figure 14).

Figure 14: Design matrix Xi for the first 40 frames, and slices Si, with i = 1 (top) and i = 10 (bottom),
obtained by fmridesign.m Matlab function through the convolution of our events matrix with the hrf model in
Glover [1999].

5.2 Hilbert–valued fixed effect model fitting to FMRI data. A comparative study

The estimation results obtained with the implementation of the classical and Hilbert–valued linear
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model methodology are now compared. Specifically, in the classical case, from the linear model approach

presented in Worsley et al. [2002], we consider a fixed–effect model fitting, in the case where the error

term is an AR(1) process, ignoring spatial correlation across the voxels. In particular, the MatLab

function fmrilm.m is implemented to fit model (34) to a single run of fMRI data, allowing for spatially

varying temporal correlated errors. The parameters of the spatial varying AR(1) models (from voxel

to voxel) are estimated from the sample autocorrelation of the residuals, obtained after estimation of

the fixed effect parameter by ordinary least–squares, ignoring temporal correlation of the errors, at each

voxel. This procedure could be iterated. That is, the estimated autocorrelation coefficient can be used to

pre–whitening the data at each voxel. Hence, the fixed effect parameter is estimated by ordinary least-

squares, from such data. This iterative estimation procedure can be repeated several times. However,

as pointed out in Worsley et al. [2002], such iterations do not lead to a substantial improvement in

practice. A variance reduction technique is then applied in Worsley et al. [2002] to the estimated

autocorrelation coefficient (reduced bias sample autocorrelation), consisting of spatial smoothing of the

sample autocorrelations. This technique reduces variability, although slightly increases the bias.

In this subsection, we also implement the approach introduced in Appendix 2, from the fMRI data

set described in Appendix 5.1. As commented before, our approach presents the advantage of provid-

ing a continuous spatial description of the variation of the fixed effect parameters, as well as of the

parameters characterizing the temporal correlated error term, with autoregressive dynamics. Further-

more, the spatial correlations are also incorporated to our functional statistical analysis, computed from

the spatial autocovariance and cross-covariance kernels, respectively defining the operators R0 and R1,

characterizing the functional dependence structure of the ARH(1) error term.

Functional fixed effect model fitting is independently performed at each slice Si, for i = 1, . . . , 16.

Specifically, for i = 1, . . . , 16, as commented before, a real-valued n × p, with p = 2, fixed effect design

matrix Xi is considered (see Appendix 5.1). The effects of the two different events studied are combined

by the vector of functional fixed effect parameters

βi(·) = [β1,i(·), β2,i(·)]T ∈ H2.

Here, H2 is the Hilbert space of 2–dimensional vector functions, whose components are square–integrable

over the spatial rectangular grid considered at each slice. Furthermore, for i = 1, . . . , 16,

Yi(·) = [Y1,i(·), . . . , Yn,i(·)]T

is the Hn–valued Gaussian fMRI data response, with n representing the number of frames (n = 64, since

the first 4 frames are removed because they do not represent steady–state images). In the computation of
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the generalized least–squares estimate of β, the empirical matrices
{

Λ̂k, k = 1, . . . , TR
}

are computed

from the empirical covariance operators (9), where TR is selected according to the required conditions

specified, in relation to the sample size n, in Bosq [2000] (see, in particular, [Bosq, 2000, pp. 101–102

and pp. 116–117], and Remark 3).

In the subsequent developments, in the results obtained by applying the Hilbert–valued multivariate

fixed effect approach, we will distinguish between cases A and B, respectively corresponding to the

projection into two and five empirical eigenvectors. For each one of the 16 slices, the temporal and

spatial averaged empirical quadratic errors, associated with the estimates of the response, computed

with the fmrilm.m MatLab function, and with the proposed multivariate Hilbert–valued mixed effect

approach, respectively denoted as EFMSEY fMRI
i

and EFMSEY H
i
, are displayed in Tables 16–17.

Table 16: EFMSE
Y

fMRI
i

and EFMSEY H
i

for case A.

Slices Si EFMSE
Y

fMRI
i

EFMSEY H
i

1 2.417(10)−3 3.492(10)−3

2 3.051(10)−3 3.119(10)−3

3 4.293(10)−3 5.523(10)−3

4 6.666(10)−3 7.690(10)−3

5 8.986(10)−3 9.961(10)−3

6 8.462(10)−3 9.434(10)−3

7 1.108(10)−2 1.920(10)−2

8 1.720(10)−2 2.720(10)−2

9 1.499(10)−2 1.914(10)−2

10 1.036(10)−2 1.851(10)−2

11 1.308(10)−2 1.634(10)−2

12 1.302(10)−2 1.300(10)−2

13 7.850(10)−3 7.939(10)−3

14 6.640(10)−3 6.730(10)−3

15 3.511(10)−3 2.832(10)−3

16 2.771(10)−3 3.540(10)−3
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Table 17: EFMSE
Y

fMRI
i

and EFMSEY H
i

for case B.

Slices Si EFMSE
Y

fMRI
i

EFMSEY H
i

1 2.417(10)−3 2.592(10)−3

2 3.051(10)−3 3.119(10)−3

3 4.293(10)−3 4.733(10)−3

4 6.666(10)−3 7.671(10)−3

5 8.986(10)−3 9.065(10)−3

6 8.462(10)−3 8.435(10)−3

7 1.108(10)−2 1.120(10)−2

8 1.720(10)−2 1.919(10)−2

9 1.499(10)−2 1.524(10)−2

10 1.036(10)−2 1.040(10)−2

11 1.308(10)−2 1.481(10)−2

12 1.302(10)−2 1.299(10)−2

13 7.849(10)−3 7.929(10)−3

14 6.640(10)−3 6.719(10)−3

15 3.511(10)−3 2.829(10)−3

16 2.771(10)−3 3.540(10)−3

It can be observed, in Tables 16–17, that the performance of the two approaches is very similar. How-

ever, the advantage of the presented approach relies on the important dimension reduction it provides,

since, as commented before, we have considered the truncations orders TR = 2 (Case A) and TR = 5

(Case B). Note that, for each slice, the parameter vector has dimension 2 × ×(64 × 64), in the model

fitted by fmrilm.m Matlab function. While the presented approach fits the functional projected model,

that, for the the cases A and B studied, is defined in terms of a parameter vector β with dimension 2×2

and 2×5, respectively. Furthermore, the iterative estimation method implemented in fmrilm.m requires

several steps, repeated at each one of the 64 × 64 voxels in the 16 slices (data pre–whitening, ordinary

least-squares estimation of β, and AR(1) correlation coefficient estimation iterations, jointly with the

spatial smoothing of the temporal correlation - reduced bias - parameter estimates).

For the slices 1, 5, 10 and 15, the temporal averaged (frames 5–68) estimated values of the response,

applying fmrilm.m MatLab function, and the fixed effect model with ARH(1) error term, in cases A and

B, are respectively displayed in Figures 15–17. The corresponding empirical time-averaged quadratic

errors are displayed in Figures 18–20, respectively.
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Figure 15: Averaged in time (frames 5–68) estimated response values for slices 1, 5, 10 and 15, obtained by
applying fmrilm.m MatLab function.
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Figure 16: Averaged in time (frames 5–68) estimated response values for slices 1, 5, 10 and 15, obtained by
applying the fixed effect approach with ARH(1) error term, for case A.
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Figure 17: Averaged in time (frames 5–68) estimated response values for slices 1, 5, 10 and 15, obtained by
applying the fixed effect approach with ARH(1) error term, for case B.
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Figure 18: Averaged in time (frames 5–68) empirical errors for slices 1, 5, 10 and 15, obtained by applying
fmrilm.m MatLab function.
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Figure 19: Averaged in time (frames 5–68) empirical errors for slices 1, 5, 10 and 15, obtained by applying the
fixed effect approach with ARH(1) error term, for case A.
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Figure 20: Averaged in time (frames 5–68) empirical errors for slices 1, 5, 10 and 15, obtained by applying the
fixed effect approach with ARH(1) error term, for case B.
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5.3 Significance test

We are interested in contrast the significance of the spatial varying parameter vector β combining

the effects of the two stimulus considered on the overall brain, in its real-valued, and H2-valued version.

The F statistic in the MatLab function fmrilm.m (fMRI linear model), computed, as before, from a

single run of fMRI data, leads to the results reflected in Table 18, on the percentage of brain voxels,

where the real–valued fixed effect model with AR(1) term is significative, for each one of the 16 slices

considered.

Table 18: Percentage of brain voxels per slice, where the real-valued fixed effect model with AR(1) error term,
fitted by fmrilm.m MatLab function, is significative.

S % voxels with rejection of H0

1 99.927%

2 99.927%

3 99.707%

4 99.902%

5 99.805%

6 99.951%

7 99.927%

8 99.976%

9 99.805%

10 99.951%

11 99.951%

12 99.902%

13 99.878%

14 99.951%

15 99.951%

16 100%

As described in Appendix 3, for each slice, i.e., for i = 1, . . . , 16, the value of the conditional chi–

squared test statistics Th, in equation (20), is computed, from four realizations of a Gaussian random

function h, generated from a Gaussian random field ξ, satisfying equation (32) on the rectangle containing

each brain slice. As before, the functional response sample size at each slice is 64, since the first four

frames are discarded. It can be observed, in the numerical results displayed in Table 19, for TR = 16,

and in Table 20, for TR = 4, that the null hypothesis is rejected, in most of the random directions
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in all the brain slices; i.e., the functional fixed effect model with ARH(1) error term is significative for

α = 0.05. Note that a very few p–values are slightly larger than α = 0.05, with very small difference,

that could be produced by the numerical errors accumulated, due to the presence of small values to be

inverted. Thus, we can conclude the suitability of our approach, to combine the effects of the scans hot

stimulus, and the scans warm stimulus, in a functional spatially continuous framework.

Table 19: p-values for Th computed at the 16 slices, considering four random directions, for TR = 16.

S D1 D2 D3 D4

1 0 0 0.082 0.023

2 0.590(10)−2 0 0 0

3 0.018 0.066 0.049 0.030

4 0 0 0 0.170(10)−10

5 0 0.026 0 0

6 0 0 0 0

7 0.710(10)−7 0 0 0

8 0 0.006 0 0

9 0.049 0 0 0.023

10 0.390(10)−7 0.031 0 0

11 0.004 0.006 0.660(10)−6 0.052

12 0.046 0 0 0.034

13 0.340(10)−7 0.028 0 0.440(10)−3

14 0 0.180(10)−6 0.021 0.050

15 0 0.140(10)−7 0.044 0.052

16 0.110(10)−4 0.230(10)−7 0 0
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Table 20: p-values for Th computed at the 16 slices, considering four random directions, for TR = 4.

S D1 D2 D3 D4

1 0 0.051 0.071 0.011

2 0.880(10)−4 0 0 0

3 0.067 0.034 0 0.037

4 0 0.250(10)−4 0.110(10)−4 0.016

5 0.370(10)−6 0 0.280(10)−6 0

6 0.001 0 0 0.220(10)−4

7 0.064 0.034 0.007 0.044

8 0.072 0.079 0.035 0

9 0.220(10)−5 0.470(10)−4 0.004 0.220(10)−9

10 0 0.120(10)−3 0.370(10)−4 0.970(10)−7

11 0.081 0.058 0 0

12 0.870(10)−4 0 0 0.036

13 0.760(10)−3 0 0 0.370(10)−3

14 0.210(10)−6 0 0 0.037

15 0 0.650(10)−4 0.032 0

16 0.540(10)−6 0 0 0.520(10)−3

Comparing results in Tables 18–20, we can conclude that both methodologies, the one presented in

Worsley et al. [2002], and the functional approach introduced here, lead to similar results regarding the

significance of the models they propose, respectively based on spatial varying real–valued multiplicative

coefficients with AR(1) error term, and Hilbert–valued coefficients with ARH(1) error term.

6 Conclusions

As shown in the simulation study, the boundary conditions affect the decay velocity at the boundary of

the covariance kernels, defining the functional entries of the matrix covariance operator of the error term.

Thus, the dependence range of the error components is directly affected by the boundary conditions.

A better performance of the generalized least–squares estimator of the parameter vector β is observed,

when a fast continuous decay is displayed by the error covariance kernels close to the boundary, as it is

observed in the circular domains. Furthermore, in the simulation study undertaken, and in the real–data

problem addressed, a good performance of the computed generalized least–squares estimator, and of the

test statistics is observed for low truncation orders. Thus, an important dimension reduction is achieved

with the presented approach. Summarizing, the proposed approach allows the incorporation of temporal
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and spatial correlations in the analysis, with an important dimension reduction.

The derivation of similar results under alternative boundary conditions like Neumann and Robin

boundary conditions constitutes an open research problem (see, for example, Grebenkov and Nguyen

[2013]). Another important research problem is to address the same analysis under a slow decay of the

error covariance kernels at the boundary (see, for example, Fŕıas et al. [2017]; Jiang [2012, 2016]; Tong

[2011], beyond the Gaussian context).

7 Supplementary Material

The eigenvectors and eigenvalues of the Dirichlet negative Laplacian operator on the regular domains

defined by the rectangle, disk and circular sector are described here (see, for example, Grebenkov and

Nguyen [2013]). It is well–known that the negative Laplacian operator (−∆D) on a regular bounded

open domain D ⊂ R2, with Dirichlet boundary conditions, is given by

−∆D(f)(x1, x2) = − ∂2

∂x21
f(x1, x2)− ∂2

∂x22
f(x1, x2), f(x1, x2) = 0, (x1, x2) ∈ ∂D, D ⊆ R2,

where ∂D is the boundary of D. In the subsequent development, we will denote by {φk, k ≥ 1} and

{λk(−∆D), k ≥ 1} the respective eigenvectors and eigenvalues of (−∆D) , that satisfy

−∆Dφk (x) = λk(−∆D)φk (x)
(
x ∈ D ⊆ R2

)
,

φk (x) = 0 (x ∈ ∂D) , ∀k ≥ 1,

for D being one of the following three domains:

D1 =

2∏
i=1

[ai, bi] , D2 =
{
x ∈ R2 : R0 < ‖x‖ < R

}
,

and

D3 =
{
x ∈ R2 : R0 < ‖x‖ < R, and 0 < ϕ < πθ

}
.

7.1 Eigenelements of Dirichlet negative Laplacian operator on rectangles

Let us first consider domain

D1 =

2∏
i=1

[ai, bi] .
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The eigenvectors
{
φk, k ∈ N2

∗
}

and eigenvalues
{
λk(−∆D1

), k ∈ N2
∗
}

of−∆D1
are given by (see Greben-

kov and Nguyen [2013]):

φk (x) = φ
(1)
k1

(x1)φ
(2)
k2

(x2) , λk = λ
(1)
k1

+ λ
(2)
k2
,

φ
(i)
ki

(xi) = sin

(
πkixi
li

)
, xi ∈ [ai, bi] , i = 1, 2,

λ
(i)
ki

=
π2k2i
l2i

, ki ≥ 1, i = 1, 2,

(36)

where li = bi − ai, for i = 1, 2.

7.2 Eigenelements of Dirichlet negative Laplacian operator on disks

In general, for the circular annulus

D̃2 =
{
x ∈ R2 : R0 < ‖x‖ < R

}
,

its rotation symmetry allows us to define −∆D̃2
in polar coordinates as

−∆D̃2
= − ∂2

∂r2
− 1

r

∂

∂r
− 1

r2
∂2

∂ϕ2
, x1 = r cosϕ, x2 = r sinϕ.

The application of variable separation method then leads to the following explicit formula of its

eigenfunctions (see, for example, Grebenkov and Nguyen [2013])

φkhl (r, ϕ) = [Jk (αkhr/R) + ckhYk (αkhr/R)]× Ck (l) , (37)

with

Ck(l) =

 cos (kϕ) l=1,

sin (kϕ) l=2 (k 6= 0) ,

where {Jk (z)} and {Yk (z)} are the Bessel functions of order k of first and second kind, respectively,

{λkh
(
−∆D̃2

)
= α2

kh/R
2}

are the corresponding eigenvalues, and the sets {αk,h, k ≥ 1, h = 1, . . . ,M(k)} and

{ck,h, k ≥ 1, h = 1, . . . ,M(k)} are defined from the boundary conditions at r = R and r = R0.

If we focus on domain D2, the disk, i.e., R0 = 0, the coefficients {ck,h, k ≥ 1, h = 1, . . . ,M(k)} are
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set to 0. The eigenfunctions then adopt the following expression:

φkhl (r, ϕ) = Jk (αkhr/R)Ck(l), l = 1, 2,

(38)

with eigenvalues

λkh (−∆D2
) =

α2
kh

R2
, k ≥ 1, h = 1, . . . ,M(k),

where {αk,h, h = 1, . . . ,M(k)} are the M(k) positive roots of the Bessel function Jk (z) of order k. Note

that we can also consider truncation at parameter M(k) for k ≥ 1, since this parameter increases with

the increasing of the radius R.

7.3 Eigenelements of Dirichlet negative Laplacian operator on circular sectors

Lastly, we consider domain D3, the circular sector of radius R and angle 0 < ϕ < πθ. The eigenvectors

and eigenvalues are given by the following expression (see, for example, Grebenkov and Nguyen [2013]):

φkh (r, ϕ) = Jk/θ (αkhr/R) sin (kϕ/θ) , r ∈ [0, R] ,

λkh (−∆D3
) =

α2
kh

R2
, k ≥ 1, h = 1, . . . ,M(k),

(39)

with M(k) and {αk,h, k ≥ 1, h = 1, . . . ,M(k)} being given as in the previous section.

7.4 Asymptotic behavior of eigenvalues

7.4.1 The rectangle

The functional data sets generated in Appendix 4 must have a covariance matrix operator with

functional entries (operators) in the trace class. We then apply the results in Widom [1963] to study the

asymptotic order of eigenvalues of the integral equation

∫
R2

V 1/2(t)lεi(t− s)V 1/2(s)f(s)ds = λf(t).

In our case, V is the indicator function on the rectangle, i.e., on domain D1, and lεi is the covariance
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kernel defining the square root

R1/2
εiεi = fi(−∆D1

) = (−∆D1
)−(d−γi), γi ∈ (0, d/2),

of the autocovariance operator of the Hilbert-valued error component {εi, i = 1, . . . , n} , with

Rεiεi = R1/2
εiεiR

1/2
εiεi .

Note that with the choice made of functions V and {lεi , i = 1, . . . , n} , the conditions assumed in Widom

[1963] are satisfied. In particular, the following asymptotic holds:

λk(R1/2
εiεi) = O(k−2(d−γi)/d), k −→∞, i = 1, . . . , n,

(see [Widom, 1963, p. 279, Eq. (2)]). Also, in general, the eigenvalues of the Dirichlet negative Laplacian

operator on a regular bounded open domain D satisfy

γk(−∆D) ∼ 4π

(
Γ
(
1 + d

2

))2/d
|D|2/d

k2/d, k −→∞.

7.4.2 Asymptotic behavior of zeros of Bessel functions.

As before, Jk (z) denotes the Bessel function of the first kind of order k. Let {jk,h, h = 1, . . . ,M(k)}

be its M(k) roots. In Elbert [2001]; Olver [1951, 1952], it is shown that, for a fixed h and large k, the

Olver’s expansion holds

jkh ' k + δhk
1/3 +O(k−1/3), k →∞.

On the other hand, for fixed k and large h, the McMahon’s expansion also is satisfied (see, for

example, Watson [1966])

jkh ' π (h+ k/2− 1/4) +O(h−1), h→∞.

These results will be applied in Appendix 4, in the definition of the eigenvalues of the covariance

operators {Rεiεi , i = 1, . . . , n} , on the disk and circular sector, to ensure their rapid decay to zero,

characterizing the trace operator class.
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