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Summary

This work derives new results on strong consistent estimation and prediction for autoregressive processes of
order 1 in a separable Banach space B. The consistency results are obtained for the componentwise estimator of the
autocorrelation operator in the norm of the space £(B) of bounded linear operators on B. The strong consistency
of the associated plug—in predictor then follows in the B-norm. A Gelfand triple is defined through the Hilbert
space constructed in Kuelbs’ Lemma ]. A Hilbert—Schmidt embedding introduces the Reproducing

Kernel Hilbert space (RKHS), generated by the autocovariance operator, into the Hilbert space conforming the

Rigged Hilbert space structure. This paper extends the work of|_Bng ZLKMJ] and L@bb@sjm_w ZQd]
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1 Introduction

In the last few decades, there exists a growing interest on the statistical analysis of high—dimensional

data, from the Functional Data Analysis (FDA) perspective. The book by Ramsay and Silverman [2005]

provides an overview on FDA techniques, extended from the multivariate data context, or specifically

formulated for the FDA framework. The monograph by [Hsing and Eubank [2015] introduces functional

analytical tools usually applied in the estimation of random elements in function spaces. The book by

Horvath and Kokoszka [2012] is mainly concerned with inference based on second order statistics. A

central topic in this book is the analysis of functional data, displaying dependent structures in time and

space. The methodological survey paper by |Cuevad [2014], on the state of the art in FDA, discusses

central topics in FDA. Recent advances in the statistical analysis of high—dimensional data, from the
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parametric, semiparametric and nonparametric FDA frameworks, are collected in the Special Issue by
Goia and Vieu [2016].

Linear time series models traditionally arise for processing temporal linear correlated data. In the
FDA context, the monograph by [Bosq [2000] introduces linear functional time series theory. The RKHS,
generated by the autocovariance operator, plays a crucial role in the estimation approach presented in
this monograph. In particular, the eigenvectors of the autocovariance operator are considered for projec-
tion (see also |Alvarez-Liébanal [2017]). Its empirical version is computed, when they are unknown. The
resulting plug—in predictor is obtained as a linear functional of the observations, based on the empirical
approximation of the autocorrelation operator. This approach exploits the Hilbert space structure, and
its extension to the metric space context, and, in particular, to the Banach space context, requires to
deriving a relationship (continuous embeddings) between the Banach space norm, and the RKHS norm,
induced by the autocovariance operator, in contrast with the nonparametric regression approach for
functional prediction (see, for instance, [Ferraty et al! [2012], where asymptotic normality is derived).
Specifically, in the nonparametric approach, a linear combination of the observed response values is
usually considered. That is the case of the nonparametric local-weighting—based approach, involving
weights defined from an isotropic kernel, depending on the metric or semi—metric of the space, where
the regressors take their values (see, for example, [Ferraty and Vieu [2006]; see also [Ferraty et all [2002],
in the functional time series framework). The nonparametric approach is then more flexible regarding
the structure of the space where the functional values of the regressors lie (usually a semi—metric space
is considered). However, some computational drawbacks are present in its implementation, requiring
the resolution of several selection problems. For instance, a choice of the smoothing parameter, and the
kernel involved, in the definition of the weights, should be performed. Real-valued covariates were incor-
porated in the novel semiparametric kernel-based proposal by |Aneiros-Pérez and Vieu [2008], involving
an extension to the functional partial linear time series framework (see also |Aneiros-Pérez and Vieu
[2006]). |Goia and Vieu [2015] also adopt a semi—parametric approach in their formulation of a two—
terms Partitioned Functional Single Index Model. |Geenens [2011] exploits the alternative provided by
semi—metrics to avoid the curse of infinite dimensionality of some functional estimators.

On the other hand, in a parametric linear framework, [Mas and Puma [2010] introduced functional
time series models in Banach spaces. In particular, strong mixing conditions and the absolute regularity
of Banach—valued autoregressive processes have been studied in |[Allam and Mourid [2001]. Empirical
estimators for Banach—valued autoregressive processes are studied in [Bosq [2002], where, under some
regularity conditions, and for the case of orthogonal innovations, the empirical mean is proved to be
asymptotically optimal, with respect to almost surely (a.s.) convergence, and convergence of order

two. The empirical autocovariance operator was also interpreted as a sample mean of an autoregressive



process in a suitable space of linear operators. The extension of these results to the case of weakly depend-
ent innovations is obtained in [Dehling and Sharipow [2005]. A strongly—consistent sieve estimator of the
autocorrelation operator of a Banach—valued autoregressive process is considered in [Rachedi and Mourid
[2003]. Limit theorems for a seasonality estimator, in the case of Banach autoregressive perturbations,
are formulated in Mourid |2002]. Confidence regions for the periodic seasonality function, in the Banach
space of continuous functions, is obtained as well. An approximation of Parzen’s optimal predictor, in
the RKHS framework, is applied in Mokhtari and Mourid [2003], for prediction of temporal stochastic
process in Banach spaces. The existence and uniqueness of an almost surely strictly periodically cor-
related solution, to the first order autoregressive model in Banach spaces, is derived in [Parvardeh et al.
[2017]. Under some regularity conditions, limit results are obtained for ARD(1) processes in [Hajj [2011],
where D = D([0, 1]) denotes the Skorokhod space of right—continuous functions on [0, 1], having limit to
the left at each ¢ € [0, 1]. Conditions for the existence of strictly stationary solutions of ARMA equa-
tions in Banach spaces, with independent and identically distributed noise innovations, are derived in
Spangenberg [2013].

In the derivation of strong—consistency results for ARB(1) componentwise estimators and predictors,
Bosd [2000] restricts his attention to the case of the Banach space C([0,1]) of continuous functions on
[0, 1], with the supremum norm. [Labbas and Mourid [2002] considers an ARB(1) context, for B being
an arbitrary real separable Banach space, under the construction of a Hilbert space H , where B is
continuously embedded, as given in the Kuelbs’s Lemma in |[Kuelbs, 1970, Lemma 2.1]. Under the
existence of a continuous extension to H of the autocorrelation operator p € L(B), [Labbas and Mourid
[2002] obtain the strong-consistency of the formulated componentwise estimator of p, and of its associated
plug—in predictor, in the norms of E(ﬁ ), and H , respectively.

functional data in nuclear spaces, arising, for example, in the observation of the solution to stochastic
fractional and multifractional linear pseudodifferential equations (see, for example, |Anh et all [2016a,h]).
The scales of Banach spaces constituted by fractional Sobolev and Besov spaces play a central role in the
context of nuclear spaces. Continuous (nuclear) embeddings usually connect the elements of these scales
(see, for example, [Triebel [1983]). In this paper, a Rigged—Hilbert—Space structure is defined, involving
the separable Hilbert space H , appearing in the construction of the Kuelbs’s Lemma in [Kuelbs, [1970,
Lemma 2.1]. A key assumption, here, is the existence of a continuous (Hilbert—Schmidt) embedding
introducing the RKHS, associated with the autocovariance operator of the ARB(1) process, into the
Hilbert space generating the Gelfand triple, equipped with a finer topology than the B—topology. Under
this scenario, strong—consistency results are derived, in the space £(B) of bounded linear operators on
B, considering an abstract separable Banach space framework.

The outline of this paper is as follows. Notation and preliminaries are fixed in Appendix 2] Funda-



mental assumptions and some key lemmas are formulated in Appendix Bl and proved in Appendix @l
The main result of this paper on strong—consistency is derived in Appendix[Bl Appendix [0l provides some
examples. Final comments on our approach can be found in Appendix [/l The Supplementary Material
provides in Appendix [§ illustrates numerically the results derived in Appendix [ under the scenario

described in Appendix [ in a simulation study.

2 Preliminaries

Let (B, ||| 3) be a real separable Banach space, with the norm ||-|| 5, and let £% (9, A, P), the space

of zero-mean B—valued random variables X such that

1// IX|2dP < oc.
B

Consider X = {X,,, n € Z} to be a zero-mean B-valued stochastic process on the basic probability

space (€, A, P) satisfying (see Bosq [2000]):
Xn=p(Xn-1) +en, n€Z, peL(B), (1)

where p denotes the autocorrelation operator of X. In equation (), the B—valued innovation process
e ={en, n € Z} on (Q, A, P) is assumed to be strong white noise, uncorrelated with the random initial
condition. Thus, ¢ is a zero-mean Banach—valued stationary process, with independent and identically
distributed components, and with 02 = E {||5n||%} < o0, for each n € Z. Assume that there exists an

integer jo > 1 such that

HijHC(B) <l (2)

Then, equation (I]) admits an unique strictly stationary solution with 0% = E {||Xn||23} < oc; ie.,

belonging to £%(2, A, P), given by X,, = ij (€n—j), for each n € Z (see Bosq [2000]). Under (),
j=0
the autocovariance operator C' of an ARB(1) process X is defined from the autocovariance operator of

Xo € L%Z(Q,A,P), as
C(x*) =E{2*(X0)Xo}, z*e€B*.

The cross—covariance operator D is given by
D (z*) = E{z"(Xo)X1}, € B".

Since C' is assumed to be a nuclear operator, there exists a sequence {z;, j > 1} C B such that, for



every x* € B* (see |[Bosq, 2000, Eq. (6.24), p. 156]):

oo oo
2
C™)=> o (zj)a;, Y ||} < oo
j=1 j=1

D is also assumed to be a nuclear operator. Then, there exist sequences {y;, 7 > 1} C B and

{z;f*, j> 1} C B** such that, for every z* € B*,

25 || g i1l < 00,

D) = @y, S|
j=1 j=1

see |Bosd, 2000, Eq. (6.23), p. 156]). Empirical estimators of C' and D are respectively given by (see

Bosd, 2000, Egs. (6.45) and (6.58), pp. 164-168]), for n > 2,

Cule) = LY e () (%), Dalet) = oY () (Kur), @ € B
=0 1=

Kuelbs, 11970, Lemma 2.1], now formulated, plays a key role in our approach.

Lemma 2.1 If B is a real separable Banach space with norm ||-|| 5, then, there exists an inner product
(-,-)j on B such that the norm ||-|| 5, generated by (-,-)z , is weaker than |-|| 5. The completion of B

under the norm ||-||z defines the Hilbert space H, where B is continuously embedded.

Denote by {z,,, n € N} C B, a dense sequence in B, and by {F,,, n € N} C B* a sequence of bounded

linear functionals on B, satisfying

Fo(zn) = l2allg,  [[Fall =1, (3)
such that
|z|| 3 = sup |Fn(z)|, =« € B. (4)
neN
The inner product (-,-) 7, and its associated norm, in Lemma 2], is defined by
<‘T’y>f[ = ZtnFn(l‘)Fn(y)a %QGH,
n=1
lzlF = Y ta{Fu@)}* <z}, «e€B,

n=1

o0
where {t,, n € N} is a sequence of positive numbers such that Z tp, = 1.

n=1



3 Main assumptions and preliminary results

In view of Lemma [Z1] for every n € Z, X,, € B — H satisfies a.s.

oo

Xn <Xn5vj>ﬁvj7 TLEZ,

|

Jj=1

for any orthonormal basis {v;, j > 1} of H. The trace autocovariance operator

oo o0

C=E Z(Xn,vj)ﬁvj ® Z(Xn,vj>ﬁvj
j=1 j=1
of the extended ARB(1) process is a trace operator in H , admitting a diagonal spectral representation, in
terms of its eigenvalues {C;, j > 1} and eigenvectors {¢;, j > 1}, that provide an orthonormal system
in H. Summarizing, in the subsequent developments, the following identities in H will be considered, for

the extended version of ARB(1) process X. For each f,h € ﬁ,

() = S Cilf )5 6 (6)
j=1
D(h) = SN (D), dr) g (hy b3) 7 b
j=1k=1
Culf) = > Coj (frbnj) 7 Png (7)
a.s. j:1
1 n—1
Chn,j = o Xiz,n,jv Xinj = (Xisbnj) g, Cn(bng) = Cnjdn;
1=0 H a.s
Da(h) = 32> (Dalbns)s bni) i (s Gns) i O (8)

1

=

=1

<.
Il

where, for n > 2, {¢n j, j > 1} is a complete orthonormal system in ﬁ, and

Cn,l > Cn,2 > 2 Cn,n >0= Cn,nJrl = Cn,n+2 = e

The following assumption plays a crucial role in the derivation of the main results in this paper.

Assumption Al. ||Xo||p is a.s. bounded, and the eigenspace Vj, associated with C; > 0 in (@) is

one-dimensional for every j > 1.



Under Assumption A1, we can define the following quantities:

1 1 1
a :2\/57, a‘:2\/§max< , ), > 2. 9
! Ci-Cy C,1—C; C—Cipa ) ! ©)

Remark 3.1 This assumption can be relazed to considering multidimensional eigenspaces by redefining

the quantities a;, for each j > 1, as the quantities c;, for each j > 1, given in [Bosq, 12000, Lemma 4.4].

Assumption A2. Let k, such that

kn,
C”hk‘n > O’ (a.s.) kn — 00, — — 0, n — oo.
n

Remark 3.2 Consider

Akn = sup (Cj — Cj+1)71. (10)
1<j<kn
For n sufficiently large,
1 o
kp <Ot < ——n— < ay, <Ag, <Y aj.
n kn Ckn _ Okn+1 ) ; J

Assumption A3. The following limit holds:

k
sup p(z) = > (p(x),¢5) g ds|| —0, k— oo (11)

z€B; ||z||p<1 -
Jj=1 B

Assumption A4. {C;, j > 1} are such that the inclusion of H(X) into H* is continuous; i.e.,
H(X) — H*,

where — denotes, as usual, the continuous embedding, H* the dual space of H and H(X) the Repro-

ducing Kernel Hilbert Space associated with C'.

Let us consider the closed subspace H of B with the norm induced by the inner product (-, ) ;; defined

as follows:

H = {:L'EB; Z{Fn(z)}2<oo}, <fag>H:ZFn(f)Fn(g)a fagGH' (12)

Then, H is continuously embedded into B, and the following remark provides the isometric isomorph-

ism established by the Riesz Representation Theorem between the spaces H and its dual H*.



Remark 3.3 Let f*, g* € H*, and fg € H, such that, for every n > 1, consider F,(f*) = /t,Fu(f )

Folg®) = VInFn(§), and Fo(f) = VinFu(f), Fo(@) = ViaFu(g), for certain f,§ € H. Then, the
following identities hold:

) = SR Zti F(DE@) = (13)
= ZtnFn(f) (9)=(f.9)

Lemma 3.1 Under Assumption A4, the following continuous embeddings hold:

H(X) < H* < B* — H < B H < [H(X)]", (13)
where
H = {xeB, Ztn{Fn(w)}2<oo}, (F,97 =Y taFu(HFulg), frg€H
H = {xEBv Z{Fn(x)}2<oo}a <fag>H:ZFn(f)Fn(g)a f,ge H
H* = {zEB, Z%{Fn(x)}2<oo}, (f9g :Z%Fn(f)Fn(g), f,ge H
H(X) = {xeﬁ, Cil(z),z>ﬁ<oo},
(f,9) = (CUf).9)5. g€ CY?(H)
M) = {well; (C@),a)5 < oo}
(f.Dpy = (CU)a)g fr9€CT V2 (H).

Proof. Let us consider the following inequalitites, for each z € B,:

2
Izl = | D tn {Ful2)} §||$||B=Sgli|Fn($)|a
j=1 n=

x|z = Sgﬂﬂxxﬂé > AFu(@)} H$Mr<§:LF )| = Il -,
nz n=1
0o 0o 1

Izl = D [Fa(@) < EZ:g‘ 2} = |zl .. (14)
n=1 n=1




Under Assumption A4 (see also Remark B3), for every f € C1/2 (f[) =H(X),

[fllaecxy = \CHE) N = 1l =

oo

From equations (I4)—(IH), the inclusions in (I3]) are continuous.

> By (13)

n=1

It is well-known that {¢;, j > 1} is also an orthogonal system in H(X). Futhermore, under As-

sumption A4, from Lemma [31]

{95, j>1} C H(X)— H* < B* < H.

Therefore, from equation ([I2)), for every j > 1,

165117 = D {Fm(¢5)}* < oo,

m=1

The following assumption is now considered on the norm (I6):

(16)

Assumption A5. The continuous embedding i3 (x), 7 : H(X) < H belongs to the trace class. That is,

oo
DNl < oo
j=1

Let {F,,, m > 1} be defined as in Lemma [ZJl Assumption A5 leads to

>~ in 06,8 = 3 3

_]:1 : m=1

where, in particular, from equation (I7]),

Nm:z ¢j}<oo

= i Ny < 00, (17)
m=1

sup N, = N < o0 (18)

m>1

Vo= SUPI|¢JIIB<ZZ{F (¢5)}” < oo, (19)

j=1m=1

The following preliminary results are considered from

4.1, pp. 100-101; Theorem 4.8, pp. 116-117]).

Bos

200

Y

, Theorem 4.1, pp. 98-99; Corollary



Lemma 3.2 Under Assumption A1, the following identities hold, for any standard ARﬁ(Z) process
(e.g., the extension to H of ARB(1) process X satisfying equation (1)),

In(n) 1/2 In(n) 1/2
||Cn—c||5(g) :(9(( p ) a.s., ||Dn—D||5(g) =0 - a.s.,

where H'HS(ﬁ) is the norm in the Hilbert space S(H) of Hilbert-Schmidt operators on H  i.c., the subspace
of compact operators A such that
Y (AW, ¢i)g < oo,

j=1

for any orthonormal basis {p;, j > 1} of H.

Lemma 3.3 Under Assumption Al, let {C;, j > 1} and {C,j, j > 1} in [{@)- (7), respectively.
Then,

1/2
n
— Cpn,; —Cj| — 0 a.s., — 0.
() spiens =0l —00n. nes

Lemma 3.4 (See details in [Bosg, 2000, Corollary 4.3, p. 107]) Under Assumption A1, consider Ay,

A, =0 <<$)l/2> , M — 00.

sup ||¢;z,j — ¢njllg — 0as., n— oo,

1<j<kn

in equation (I0) satisfying
Then,

where, for j > 1, and n > 2,

Gy =580 Dnj, 05) 5 Pis  SE0Pnjs D) i = Lpn ;.63) 520 = Lign s is) <0

with 1. being the indicator function.

An upper bound for ||¢|| 5, 5 = Z Cip; @ b is now obtained.

j=1 BxB

Lemma 3.5 Under Assumption A5, the following inequality holds:

el pxn = sugllC(Fn) (Fm)| < NCll 2y -

10



where N has been introduced in equation (I8), E(I; ) denotes the space of bounded linear operators on

H, and ||-||L(ﬁ) the usual uniform norm on such a space.

Let us consider the following notation.

c = C(b{n®¢;z = C(b@(b, Cpn = Cn,‘(bn,’@(bn,’-
oy ; i Pn.j g ﬁ@ﬁ; A ﬁ@ﬁ; JPn.j J
c—cn = Y Cith ;@Y Cnitn; @ n; (21)
ol = =

Remark 3.4 From Lemma [33, for n sufficiently large, there exist positive constants Ky and Ko such

that

K1 (C(p), ) < (Cule)s9) g < K2 (Cl9)9) g, Vo € H.
In particular, for every x € H(X) = Cl/Q(H), considering n sufficiently large,

2 (O @)y > (CA @)y > 1 (O @)

1

1 9 - 1 2
& glalion = (O @.o)5 2 g leli. 22)

Equation (22) means that, for n sufficiently large, the norm of the RKHS H(X) of X is equivalent to

the norm of the RKHS generated by C.,, with spectral kernel ¢, given in (Z1).

Lemma 3.6 Under Assumptions A1 and A—AD5, let us consider Ay, in (I0) satisfying

\/EAkno< ﬁ) n — oo, (23)

where ky, has been introduced in Assumption A2. The following a.s. inequality then holds:

e~ cullps < max(NVN) [IC = Cull gz

+2max(\/||0||£(ﬁ), \/||Cn||£(;[)) [?ul’ sup [Fi(¢7, )|

>1 m>1

X [ ka8AZ ICn = CI2 o+ D Ndnm — &l
m=kn,+1

Therefore, ||c — cnll g g —ra.s. 0, as n — 0.

11



Lemma 3.7 For a standard ARB(1) process satisfying equation (), under Assumptions A1 and

A3-A5, for n sufficiently large,

S 6.5 = Pl

2
< G eV [IC = Cal ey

2 (10 ey 10 ecy) (500 500 (6,0

m=k,+1

+ sup |dn; = Il gNICllsay +VIC = Cn ||S(H>] .5
1<j <k,

Under (23),

sup ||pn; — &, ]|, — 0 as, n—oc.
1<j<kn

Lemma 3.8 Under Assumption A3, if
Z ||¢n,j - ¢;z,j||B —as. 0,, m— 00,

then
kn
sup )s Png) g Pnjl| — 0a.s., n— oo

2€B; |lz]p<1 —
) j—l B

Remark 3.5 Under the conditions of Lemmal[5.7, if

> 1
k3/2A == n E n,m ) %=
o S =0 In(n) , m=k,+1 H¢ 7 (bn’mHH ? kn )’ oo

then, equation (23) holds.

Let us know consider the projection operators

kn kn

ﬁkn ('T) = Z(wa¢n7j>f[¢n,ja I+ (‘T) = Z<$a¢;z,j>f1¢{n,j’ re€BC ﬁ

j=1 j=1

12

(26)



Remark 3.6 Under the conditions of Remark[3.3, let

ka" = Z Z ¢n,] ¢n,p ¢n,j 2y ¢n,1’7

j=1p=1
then
n k’n/
sup ZZ T, Ong) i (P(Dng)s Pnp) i Pnp|| — 0 a.s., n— oco.
z€B; ||95||B<1 j=1p=1 B

4 Proofs of Lemmas

Proof of Lemma

Proof. Applying the Cauchy—Schwarz’s inequality, for every k,1 > 1,

C(FeF) = D CiF(o)F(6)| < | D CilF(6)12 Y ColFi(e,))2
2 2

j=1

IN

sup | > [Fr(e;) 2ZFz 9p))? = sup|C;|V/ Ny,
J=Z p=1 Jj=Z

j=1

where {F,,, n > 1} have been introduced in equation [B]), and satisfy [@)—(). Under Assumption A5,

from equation (I8,

lcllBxs = sup IC(Fk,Fz)I < sup sup |G|/ NiNi = N sup |C5] = N|C|l 27
k,l ki>15>1 i>1

Proof of Lemma B.0

13



Proof. Let us first consider the following identities and inequalities:

|C = Cn(Fr)(F1)]

IN

IN

IN

IN

Z Cij((b;z,j)E((;S;z,j) — Cn i Fi(fn,;)Fi(én,j)

Jj=1

D ICHIF (@ DIF(Sh5) = Fildng)
j=1

+sup |Cj — Co jl | Fi(@), ;) Fi(¢n )]
J

H|Cr i Fi (0, )1 Fi (9, ) — Fi(Pn j)]

\IZC {Fk d);w} ZC {Fl ny Fld)"])}

?1;}1) |Cj - Cn7j|\l Z {Fk(fbfnd)}2 Z {Fl(‘bnd)}Q

j=1

\l Z Cruj {Fi(bn)} Z Cnj { Fr(¢), ;) — Fi(¢ny)}”

JZC {Fi(¢),;) — Fu(dny)}
sup G5 = Co gV N/ Ny
12

\/ﬁl\l chﬁj {Fk(‘ﬁ;,g) - Fk(¢n7j)}2

max(N, VN)

\l ||CH5(1§) Z {E(¢;zg - ¢n,j)}2
j=1

JF”C*CnHL(ﬁ)

+$ ”Cnllg(fj) Z {Fk(¢;z,j - ¢n,j)}2‘
j=1

14



IN

IN

max(N, V) [[[€ = Cul oz

+

+

+

+

oo oo 2

j=1m=1

1Cll 2z ZZ{Fm:m (G )i = (Prss S }2J

j=1m=1

max(N, VN) [IC = Cul sz

(o] o0 2
1€ ety D AP} S {(Ghss )iy = (9ns B |
m=1 j=1

j=1

max(N, VN) [Hcf Coll oty

+

+

+

+

2

”C’Hg(ﬁ) Z {F‘l((b{nm }22{ d)njad)nm <¢n7j7¢{n,m>ﬁ}
m=1 j=1

oo

IC:, Ilg(mZ{Fk ¢;m}22{¢w¢nm = (Sni b, >}2‘

max(N, VN) [[[C = Cul oz

1] ety S A} [ Gnim — Byl
m=1

”Cnllg(fj) Z {Fk(¢%,m)}2 H(bn,m - (biz,mll%‘
m=1

max(N, V) [IC = Cul sz

+Su>pl‘17l(¢;zm «CHL ZHfi’nm Dl

+ sup | Fk (&) \J IColl 2ty D Ibmm — %,M%‘
mZ m=1

< max(N, VW) [I€ = Cull

+max (\ICll g zays/ICnl o))
Lsnlipl | Fy ()| + sup |Fk(¢;l,m)@ $7nz—l | dnm — %,m”%} :

15

(27)



Under Assumption A5, from equation (I7),

o]
Z ||¢n,m - Qﬁz,m”% < 00, sup ’Fk((b{n,m)’ < 00, k Z 1.
m=1 m2>1

Thus, considering k,,, as given in Assumption A2,

o0

o0 kn
S Mbnm = Sl =D Mbnm =l + D Nbnm — Sl
m=1 m=1

m=ky,+1
o0
<kn S |onm—hmllz+ D Nnm— bl
1<sm<kn m=kn,+1

m=k,+1

From equation (20), under A;, = o ( ‘1n?n)) )

knSAZ (| — CI2 = < kn8AZ, [|Cy — CII2, 5 —bas 0, 1 — 00.

L(H) S(H)
Under Assumption A5,
o0
Z | Prm — Qs'ln,m”% —a.s. 0, n—o0.
m=ky,+1

From equations 27)—(30), since, under Assumption A5,

sup sup | Fy. (¢}, ,,)| < o0,
k>1m>1

we have |lc — ¢, ||lpxB = supy, [(C — Cp)(Fr)(F))| —as. 0, as n — oo.

Proof of Lemma B.1]

Proof. Let us first consider the following a.s. equalities

Crj (fnj — b1 ;)

Cn (‘bn,j) - C",j(b’ln,j = (Cn - C) ((bn,j)

C (fnj — ¢n;) +(Cj = Cnj) ¢l s

+

16

(28)

(31)



From equation (BI]), keeping in mind Assumption A2,

/ 1 ,
I6n.s = Fnslls < (€0 =) Gullln+ =1 (9ns = 905)
+ ) (bfn,jHB = %ﬂ [S1+ 52+ 53], as. (32)

For n sufficiently large, from Lemmas and B.6] applying the Cauchy—Schwarz’s inequality, for

every j > 1,
S1o= (Cn=C)(Pni)llp
= sup ch kEm (fn,k) (Dn,ks Onj) i ZCkF (Grp Ons)

= Ssup Z Z tlF‘l((bn,j) {Cn,ka (¢n,k)ﬂ(¢n,k) — CrFp ((b{n,k)ﬂ((b{n,k)}‘

k=1

k=1 I=1
= sup Z 0F (bns) > CokFon(bn k) Fi(Gn ) — CkFon (0, 1) Fi (0, 1)
™ i=1 k=1
< sup, Ztl[ﬂ(¢n7j)]2
m o\ =1
2
\lztl{zcn kFon (O k) Fi (k) — Cka(¢;,k)ﬂ(¢%7k)}
=1
< ||¢n,J||H« Ztlsup chkF ¢n k)Fl((bnk) Cka(¢n k)ﬂ((bnk)

= |len — C||BxB

< max(N, V) [IC = Cull sz

+2max (IClqay 1CulLey) [sup sup 7ty |

m=k,+1

17



ZzthkF G i) FL(p k) F1 (fnj — D j)

k=11=1

So

1€ (#ng = 6)ll 5 = sup

o0 o0 o0 2
< sup [ Dt {F (dns— )} Z ZokF & (S, )}
m =1 =1 —
< oy — wanup chF (D 1) F1 (i)
mil =1

I6n.5 = GnsllgllcllBxn < lén; — & llgNIC sy as.

(34)
Under Assumption A3,
S’3<sup|C -C 73|||¢”JHB <V|C-cC, HL <V|C-C, HS a.s.
(35)
In addition, from Lemma [3.2]
ICrn — C||S(ﬁ) —as 0, 1 — 00,
and
Cn,j —ras. Cj, n— oo.
For e = C}, /2, we can find ng such that for n > ng,
ICn = Cllgiry <€=Cka/2, as.
|Cn,kn - Cknl <e< HCn - CHg(ﬁ)
an >Ok *€>Ok 7||C C”L >Ck *Ok /2>Ck /2
(36)

From equations ([B2)—(@H), for n large enough such that equation (B6) holds, the following almost

18



surely inequalities are satisfied. For 1 < j < k,,,

S 6.5 = Pl

1
< o— [max(V. V) [IC = Cul o )

n,kn

+2 max (\/||C||L(,;,), JICallea) {Sup sup |Fi(¢, )]}

m>1

| kn8AZ [|C, 0||£(H)+ > lbnm— ;,mII%,‘
m=ky,+1

+ 50 60— 0l N IOy + VIO - cnS(H)]
<j<

2
< G [NV [IC = Gl

2w (/100 ey 1CulLe) {sum sun (76,1}

1>1 m>1

X [ KaBAL NI = CI2 o+ D dnm = Pl
m=k,+1

+ 51 1o = 0l aNIC sy + VIO - cns(,ﬂ]

1<5<

Hence, equation (24]) holds. The a.s. convergence to zero directly follows from Lemma B2 under

@3).

[
Proof of Lemma [B.§
Proof. The following identities are considered:
k‘n kn
Z (bn,J ¢n,j - Z <p($)a ¢%,J>I§ ¢;z,j
j=1 j=1
kn kn
=D (0@). bns) g (bng = 03) + D (p(x) Onj = B 5) 5 D (37)
j=1 j=1

19



From equation ([B), applying the Cauchy—Schwarz’s inequality, under Assumption A3,

o0

kn
Z ¢n J d)n,j - Z <p(1‘), ¢;l,j>f[ d);l»j

z€B; ||z||3<1 j=1 i
e J=1 B

Z lp@) 7l 6n.ill 7lléns — & ;llB

zeB l2ls<1

+||p(év)||ﬁ||¢n,j — il i1l 90 51l

+  sup > (p@), ;) g S
rEB; ||1||B§1 j=kn+1 B

< sup el ZH%,J— Pn,jllB + ll6n; — én sl Bsup ey, 51l
z€B; ||z||p<1 J

+ sup > p@) i) g O
TEB; ||1||B§1 j=kn+1 B

< sup ||P||L ylzllz(1+V) ZH%J 51l B

z€B; ||z||B< j=1

+ sup Z <P($)7¢%,j>ﬁ Qﬁw‘

z€B; |lzllp<1||;—p 11

B
kn
< Il (1 V) 2 Ions = s
)
+ s ST (p@) g | 0 0 as .
z€B; ||z||p<L1 =k 41 B

5 ARB(1) estimation and prediction. Strong consistency res-
ults

For every x € B C H , the following componentwise estimator pg, of p will be considered:

k Dn(¢n,]) )

Do, (2) = (Hk D, O Ik ) i

where II*» has been introduced in equation (26), and C,, Cy j, ¢n,; and D, have been defined in

equations ([@)—(8)), respectively.
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Theorem 5.1 Let X be, as before, a standard ARB(1) process. Under the conditions of Lemmas [3.7]
and [38 (see Remark[31), for all n > 0,

~ n 2
P (Iok, = plles) =n) < Kexp <_i) ,

Qn
where
2
kn
Qn=0 C;;lknzaj , TN — 0oQ.
Therefore, if
kn
~1 _ _n
kann ;ajo< ln(n)) , M — 00, (38)

then,

ok, — Plle(s) —a.s 0, n— oo

Proof. For every x € B, such that ||z||p < 1, applying the triangle inequality, under Assumptions
A1-A2,

[T D, O I (2) — T pIT* ()| < T (Dyy — D)C M I ()| 5

+ | (DO - ) (@)

— Si@) + Sala). (39)
Under Assumption A3, considering inequality (36)),
Si(x) = [ (D, — D)C ™ (2)] 5
kn kn
< Cn }cn ZZ €, (b"h] D - D)(¢n,J) ¢n7p>f1 ¢n,p
j=1p=1 5
kn kn
2, 6ng) 7| (Do = D)(bn ) bnp) 7| [ 6npll 5

< 207kl Dn = Dl £ ) Z [ énpll
=1

<2VCL 'k ||Dn = Dl g7y (40)
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Furthermore, applying the triangle inequality,

Sa(z) = | (DC;H = p)TI* (2)]

IN

[TTE DO TE (2) — TP DO TR (2) | 5

+ [T DO () — T pITn ()| 5 = San (x) + Saa (). (41)

Under Assumptions A1-A2, C~! and C,! are bounded on the subspaces generated by

{¢j, 7=1,... kn}tand {¢n j, 7 =1,...,kn}, respectively. Consider now

Sy(z) = |I*DC; I (2) — ' DO~ 'T* ()| g

kn kn 1 /
- ZZ GJ <z’¢"»j - ¢n,j>ﬁ <D(¢n,j)ﬂ¢n,p>ﬁ ¢n,p
j=1p=1 >

Fon ki ) )
Z <Cn7j - EJ) <1';¢;z,j>ﬁ (D(Pn,5) bnp) i Prp

+

j=1p=1

kn kn 1
+ZZ_ €T, ¢ ,]> < ¢n,] _¢;,j)a¢n,p>ﬁ ¢n,p
j=lp=1 7 B
kn kn

) ) e | PR T2 P PR
j=1p=1 ke
1

tla - [ 1P1emlenslo
+&ZMDm@m@m—¢;mmwwmg (42)

From [Bosd, 2000, Lemma 4.3, p. 104], for every j > 1, under Assumption A1,

by — @il < 431Ca = Cllgay (43)

where {a;j, j > 1} has been introduced in (@), for j > 1. Then, in equation ([@2), considering again

inequality (3d), keeping in mind that c; < a;, we obtain

kn n
521@) < 401;1 Z ||¢n7p||B||D||g(ﬁ)||Cn - CHL(fl) Zaj
p=1 j=1
kn
< VG Dl g ICn = Cllsgany D_ i (44)
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Applying again the triangle and the Cauchy—Schwarz inequalities, from (@3],

Sy, = |II* DO () — TP pIT*» (2)|| 5
kn kn
= Zz<xa¢{n7j _¢n,j>ﬁ <p(¢{n7j)’¢n,p>ﬁ ¢n,p
j=1p=1
+ <$a ¢n,j>f1 <p(¢fn,j - ¢n,j)a ¢n,p>f1 ¢n,p
kn kn
< YD ezl — dusllalloll a1 1 dnpll llénpll 2
j=1p=1

Hlzlgldnill gllol iy llon; = nill 7l 6npll 7l énplls

kn kn
< 2l ICn = Clsea (Z ||¢n,p||3> S q,
p=1 =1
kn
< 2V||F’H[;(ﬁ)|‘cn*CHS(ﬁ)anaj- (45)

From equations (39)—H),

sup || D, b () — T plTE ()] 5
z€B; |lz][p<1

< 2VCL 2Dy - Dl gz
kn
1 = Cllg(ny2Vhn Y a (2CEHID oy + lell ey ) - (46)

j=1

From equation ({6), applying now [Bosq, 2000, Theorem 4.2, p. 99; Theorem 4.8, p. 116], one can

get, for n > 0,

z€B; ||lz||p<1

< sup  ||[IF" D, C TR (2) — TP pIT*» ()| 5 > n)

/\

z€B; ||z||B<1 z€B; ||z]|B<L1
<P <|Dn — Dl s > L)
2VC; k2

+P | G~ Cllseapy >

< ( sup  Si(x) > n) +P ( sup  Soi(x) + Saa(x) > 77)

n

kn

k> a; [26 21Dl zpy + lell e i)
j=1

7’L7’]2 nn

<8exp | — — >) +4exp(—Q—j), (47)

(2VC, k) <7 +0 <Tczl—ki
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with v and ¢ being positive numbers, depending on p and P, respectively, introduced in [Bosq, 2000,
Theorems 4.2 and 4.8]. Here,
2
En 9
Qu = WS a; | [2C0M Dl gy + ol e |
j=1
n
X oy + ﬂl ko ’ (48)
2Vka > aj [265 11Dl gy + ol
j=1

where again a; and 3, are positive constants depending on p and P, respectively. From equations (7))
and (@8], if
kn
n
k,Ci ! a;=o0 —— |, n— o0,
<y =o( /i)

then, the Borel-Cantelli lemma, and Lemma[3.§ and Remarks[B.5-B.8lead to the desired a.s. convergence

to zero.

Corollary 5.1 Under the conditions of Theorem [51],

||ﬁkn (Xn) - p(Xn)”B —a.s. Oa n — o0.

The proof is straightforward from Theorem [5.1] since

198, (Xn) = p(Xn)l B < 1Pk, = plles) | XollB =as 0, n— o0,

under Assumption Al.

6 Examples: wavelets in Besov and Sobolev spaces

It is well-known that wavelets provide orthonormal bases of L?(R), and unconditional bases for

several function spaces including Besov spaces,
{By,, s€eR, 1<pq<oo}.

Sobolev or Holder spaces constitute interesting particular cases of Besov spaces (see, for example,
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Triebel |1983]). Consider now orthogonal wavelets on the interval [0,1]. Adapting wavelets to a finite
interval requires some modifications as described in |Cohen et all [1993]. Let s > 0, for an [s] 4+ 1-regular
Multiresolution Analysis (MRA) of L?([0,1]), where [-] stands for the integer part, the father ¢ and the
mother v wavelets are such that ¢, € Cl*I+1([0,1]). Also ¢ and its derivatives, up to order [s] + 1, have
a fast decay (see [Daubechied, 1988, Corollary 5.2]). Let 27 > 2([s] + 1), the construction in (Cohen et al.
[1993] starts from a finite set of 27 scaling functions {SDJ,k, k=0,1,...,27 — 1} . For each j > J, a set

27 wavelet functions {’L/J]‘JC, k=0,1,...,27 — 1} are also considered. The collection of these functions,

{wJ,kvkzoalv"'a2J71}a {1/)]1]6,]{3:0,1,,2‘]*1}, jZJa

form a complete orthonormal system of L? ([0, 1]). The associated reconstruction formula is given by:

271 29 _1
t) = Z O‘é,k‘pJ,k(t) + Z Z ij;kwj,k(t), vt €0,1], YfeL?([0,1]), (49)
k=0 §>J k=0
where
Y- _ J
oy = fWpsrt)dt, k=0,...,27 —1,
0
1
ﬂgf,k = f®);)dt, k=0,...,27 =1, j > L.
0

The Besov spaces B, ,([0,1]) can be characterized in terms of wavelets coefficients. Specifically,
denote by &’ the dual of S, the Schwarz space, f € &’ belongs to B, ,([0,1]), s € R, 1 < p,q < oo, if and

only if
- 1/q

£15.0 = e Fllp+ (D 275w fllp)* | < oo (50)

j=1
For § > 1/2, consider T : H{ﬁ([O, 1]) — Hg([(), 1]) be a self-adjoint positive operator on L?([0, 1]),

belonging to the unit ball of trace operators on L?([0,1]). Assume that
T H;7([0.1) — H5(0,1)), T HF([0.1)) — Hy7([0,1))

are bounded linear operators. In particular, there exists an orthonormal basis {vy, k> 1} of L?([0,1])

such that, for every I > 1, T (v;) = tjv;, with Ztl = 1. In what follows, consider {v;, [ > 1} to be a
1>1
wavelet basis, and define the kernel ¢ of T as, for s,t € [0, 1],

271 271

228 —1 258
St QJZSDJ]C 90]]6 22[317])222 ]wjk ’l/)]k() (51)

j=>J k=0
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In Lemma 2.1]
{Fm}={F§,, k=0,...,27 —1}U{F),, k=0,...,27 — 1, j > J}
are then defined as follows:

F{. = ok k=0,...,27 -1

)

Fly = tjn, k=0,...,27 -1, j> (52)
Furthermore, the sequence
{tm} ={t5,, k=0,...,27 =1} U{t},, k=0,....27 =1, j > J},

involved in the definition of the inner product in H , is given by:

1

J—1
t?,k = ?’ I{/’ZO,,2 .
2% -1 1
t_qujk = m2 2jﬂ, k:(),...,2j 1, ]ZJ (53)

In view of [Angelini et all, 2003, Proposition 2.1], the choice (B2)—([E3) of {Fm} and {tm} leads to

the definition of

H = [H}([0,1])]* = Hy?([0,1)),

constituted by the restriction to [0,1] of the tempered distributions g € &’(R), such that
(I — A)=P/2g € L*(R), with (I — A)~#/2 denoting the Bessel potential of order 3 (see Triebel [1983]).
Let now define B = BY, ([0,1],) and B* = BY {([0,1]). From equation (E0), the corresponding norms,

in term of the discrete wavelet transform introduced in equation ([@9), are given by, for every f € B,

Ifls = sup{’agk’, k=0,....27 5|80 | k=0,...,2 - 1; sz} (54)
27 -1 0o 291
ol = D Jasul+ D20 |8L], voe B (55)
k=0 j=J k=0
Therefore,
B* =BY,([0,1]) = H = L*([0,1]) < B = B, . — H = H;"([0,1)). (56)
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Also, for 8> 1/2,

H* = H7([0,1)) — B* = BY 1([0,1)).

For v > 243, consider the operator C' = (I —A)~7; i.e., given by the 2/ power of the Bessel potential

of order 3, restricted to L?([0,1]). From spectral theorems on spectral calculus (see [Triebel [1983]), for

every g € C1/? (H"([0,1])),

918y = (CTHD P msqony = (= A)F2(C7HA) (1= 2) P2 ()

= AN (U= 00P) =3 (- 4)7)

L2([0,1])

1 Wze o,y = I1£ 1.

where

1i= / (I = D)TPR(f)(s) I = 8)72(¢;)(s)ds,
0

with {¢;, j > 1} denoting the eigenvectors of the Bessel potential (I — A)~#/2 of order S, restric-
ted to L2([0,1]), and {\; (I — A)*=F), j > 1} being the eigenvalues of (I — A)=#C~! on L2([0,1]).

Thus, Assumption A4 holds. Furthermore, from embedding theorems between fractional Sobolev

spaces (see [Triebel [1983]), Assumption A5 also holds, under the condition v > 25 > 1, considering
H = L*([0,1)).

7 Final comments

Appendix [6] illustrates the motivation of the presented approach in relation to functional predic-
tion in nuclear spaces. Specifically, the current literature on ARB(1) prediction has been developed for

B = CJ|0,1], the space of continuous functions on [0, 1], with the supremum norm (see, for instance,

Alvarez-Liébana. et al! [2016]; Bosd [2000]), and B = D([0, 1]), constituted by the right—continuous func-

tions on [0, 1], having limit to the left at each t € [0, 1], with the Skorokhod topology (see, for example,

Hajj [2011]). This paper provides a more flexible framework, where functional prediction can be per-

formed, in a consistent way, for instance, in nuclear spaces, as follows from the continuous inclusions
showed in Appendix

Note that the two above-referred usual Banach spaces, C[0, 1] and D(]0, 1]), are included in the Banach
space B considered in Appendix [f (see Supplementary Material in AppendixBlabout the simulation study

undertaken).
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8 Supplementary Material

This document provides the Supplementary Material to the current paper. Specifically, a simulation
study is undertaken to illustrate the results derived, on strong comnsistency of functional predictors, in
abstract Banach spaces, from the ARB(1) framework. The results are also illustrated in the case of

discretely observed functional data.

8.1 Simulation study

1l = s {|alu| k=0,....270

f
Bk

L k=0,...,29 1, j:J,...,M}

(58)

where

1
al /0 Fpse®)dt, k=0,...,27 —1,

1
Bl / FO0e)dt, k=0,...,27 =1, j>.
0

Thus, equation (G8) corresponds to the choice B = BY, ([0, 1]), when resolution level M is fixed for

truncation. Therefore, B* = B{ ;([0,1]) is considered with the truncated norm

27 _

—

ﬂ?,k , g€ B*;

271 M
lols = D Ja%]+ >
k=0 Jj=J

k=0
(59)

where {a, } and {57, } are the respective father and mother wavelet coefficients of function g. Further-

more, as given in Appendix [0] of the manuscript,
H* = HJ(0,1]) = BY,([0,1]),  H = H;*(0,1])) = By ([0, 1)
2 ’ 2,2 ) ) 2 ’ 2,2 ) )

for 8 > 1/2. Since Daubechies wavelets of order N = 10 are selected as orthogonal wavelet basis,

with N = 10 vanishing moments, according to |Angelini et all, 2003, p. 271 and Lemma 2.1}, and

Antoniadis and Sapatinasd, 2003, p. 153], we have considered J = 2, and M = [log,(L/2)] = 10, for

L = 2! nodes, in the discrete wavelet transform applied. In addition, value 3 = 6/10 > 1/2 has
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been tested, with v = 28 4+ €, ¢ = 0.01 (see definition above of the extended version of operator C' on
H=H" ([0,1])). The covariance kernel is now displayed in Figure[Il (see [Dautray and Lions, 1990, pp.
119-140] and |Grebenkov and Nguyen, 2013, p. 6]).

0.15
0.1

0.05

140

80 100

50
40 €0

20

0 o

Figure 1: Covariance kernel defining C, generated with discretization step size Ah = 0.0372.

Under Assumption A3, operator p admits the following extended representation in H= H=?(]0,1)),
and in B :

L+ G=h
<P(¢j)a¢h>H—6([o71]) = )
e~ li=m/W gL

Operator C. also admits, in this case, the following extended version in H = H#([0,1]) :

Ci(L—pj;) d=h

<Ca(¢j)a¢h>H7B([071]) = ’
e—li=hl*/w? j#h

being W = 0.4.

8.1.1 Large-sample behaviour of the ARB(1) plug-in predictor

The ARB(1) process is generated with discretization step size Ah = 0.0372. The resulting functional

values of ARB(1) process X are showed in Figure 2] for sample sizes

ng = [2500, 5000, 15000, 25000, 40000, 55000, 80000, 100000, 130000, 165000] .
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In this section (but not in the next one), the generated discrete values are interpolated and smoothed,
applying the ’cubicspline’ option in ’fit.m’ MatLab function, with, as commented before, the number
of nodes L = 2 = 2048, then M = 10, and Ah = 0.0093. In the following computations, N = 250

replications are generated for each functional sample size, and k,, = In(n) has been tested.

The random initial condition Xy has been generated from a truncated zero—mean Gaussian distri-
bution. Figure [ illustrates the fact that Assumption A1 holds, and Figure M is displayed to check

Assumption A2.

Figure 2: Functional values X, for sample sizes [2.5,5, 15,25, 40, 55, 80, 100, 130, 165] x 10® and discretization
step size Ah = 0.0372.

0.45 '

04+ ;

0.1

0.05

“1 “10 “20 “30 “a0 “s0 “60 “70 “go “90 “100

Figure 3: A set of 100 values of || Xo (wi)|| 5, ! =1,...,100, (blue dotted line) are generated, for discretization
step Ah = 0.0372.
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3 4 5 6 7 8 9 10 11 12

Figure 4: Assumption A2 is checked for sample sizes n, = 35000 (blue line) and n; = 395000 (orange dotted
line), displaying the decay rate of empirical eigenvalues {Ch ;, 7 =3,...,kn}, being k, = [In(n)].

Condition (B8)) in Theorem [5.1] has been checked as well (see Figure B).

180

160

140

120

100

80

60

40

20

0 | | | | | | | | |
30 31 32 33 34 35 36 37 38 39 40

ko, =
Figure 5: Values for <kan_n1 Zaj> (n1/2 (ln(n))_l/Q) , tested for truncation parameters k, = 30,...,40,
j=1

linked to sample sizes by the truncation rule k,, = In(n).

To illustrate Theorem Bl and Corollary [5.] Table [l displays the proportion of values of the random

variable Hp (Xn,) — Xnit1 H that are larger than the upper bound
B

&n, = exp 5|, t=1,...,10, (60)



from the 250 values generated, for each functional sample size ns, t = 1,...,10, reflected below.

Table 1: Proportion of simulations whose error B-norm is larger than the upper bound in equation (60).
Truncation parameter k, = In(n) and N = 250 realizations have been considered, for each functional sample
size.

T

n1 = 2500 =2

n2 = 5000 75

ns = 15000 =T

na = 25000 || 725

ns =40000 || 225

neg = 55000 || 35

n7 = 80000 0

ng = 100000 || 55

ng = 130000 0

nio = 165000 0

Figure [ below illustrates the asymptotic efficiency. The curve n='/* is also displayed (red dotted

line).

0.08

0.06

0.04

0.02 | | | | | | | |
0 2 4 6 8 10 12 14 16 18

x10%

Figure 6: Asymptotic efficiency. Empirical mean-square error (blue solid line) E {HP(XM) — Xnit1

2
)
B

based on N = 250 simulations. The curve n~'/* is also drawn (red dotted line).
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8.1.2 Asymptotic behaviour of discretely observed ARB(1) processes

The results in Theorem [B.1] and Corollary 5] are now tested for different discretization step sizes:
{AhT =2 1) = 1,...,7}, Ah, —7% 0,

that is,

Ahy = 196 (107%), Ahy =9.78 (1077),
Ahg = 4.89(107%), Ahg=244(107"),
Ahs = 122(107%), Ahg=6.10(107°),
Ah; = 3.06(107°).

Due to computational limitations involved in the smallest discretization step sizes, we restrict our

attention here to the sample sizes
{ny = 5000+ 10000 (t — 1), t =1,2,3},

and N = 120 realizations have been generated, for each functional sample size. The same nodes are
considered as in the previous section, in the implementation of the discrete wavelet transform, without

previous smoothing of the discretely generated data.

Table [ displays the results obtained on the proportion of values, from the 120 generated values,

o
lo(xty =% o n=1120,

that are larger than the upper bound (60), considering different discretization step sizes, for each sample
size

{n; = 5000+ 10000 (t — 1), t =1,2,3},

and for the corresponding truncation orders {k,, = In(n;), t =1,2,3}.

33



Table 2: Proportions of simulations whose error B-norms are larger than the upper bound in (60),
for sample sizes n = [5000, 15000, 35000]. Truncation parameter k, = In(n) has been considered.
For each one of the functional sample sizes, the results displayed correspond to discretization step sizes
{Ahr = (28+’" — 1)71, r=1,..., 7}A We have generated N = 120 simulations, for each sample and discret-

ization step size.

ni1 = 5000 | no = 15000 | n3z = 35000
Ahy =1.96 (107%) = = =5
Ahy =9.78 (107%) = = =
Ahs =4.89 (107%) 5 = =
Ahy =244 (107%) 55 5 5
Ahs =122 (107%) =5 =5 0
Ahg =6.10 (107°) = 0 0
Ahz =3.06 (107°) 5 0 0
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