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1. Introduction

In the last few decades, there has been a growing interest in the statistical analysis of high-dimensional data from the
Functional Data Analysis (FDA) perspective. The book by Ramsay and Silverman [31] provides an overview of FDA techniques
adapted from the multivariate data context or specifically formulated for the FDA framework. The monograph by Hsing and
Eubank [23] introduces functional analytical tools useful for the estimation of random elements in function spaces. The book
by Horvath and Kokoszka [22] is mainly concerned with inference based on second order statistics; a central topic in this
book is the analysis of functional data exhibiting dependent structures in time and space. The methodological survey paper
by Cuevas [12] discusses central topics in FDA. Recent advances in the statistical analysis of high-dimensional data from the
parametric, semiparametric and nonparametric FDA viewpoints are collected in the JMVA Special Issue by Goia and Vieu [21].

Linear time series models traditionally arise for processing temporal linear correlated data. In the FDA context, Bosq's
monograph [9] introduces linear functional time series theory. The RKHS generated by the autocovariance operator plays
a crucial role in the estimation approach presented therein. In particular, the eigenvectors of the autocovariance operator
are considered for projection; see also [3]. Its empirical version is computed when they are unknown. The resulting plug-in
predictor is obtained as a linear functional of the observations, based on the empirical approximation of the autocorrelation
operator. This approach exploits the Hilbert space structure; its extension to the metric space context, particularly in the
Banach space context, relies on a relationship (continuous embeddings) between the Banach space norm and the RKHS
norm induced by the extended autocovariance operator. This is in contrast with the nonparametric regression approach,

* Corresponding author.
E-mail addresses: mruiz@ugr.es (M.D. Ruiz-Medina), javialvaliebana@ugr.es (J. Alvarez-Liébana).

https://doi.org/10.1016/j.jmva.2018.08.001
0047-259X/© 2018 Elsevier Inc. All rights reserved.

Please cite this article in press as: M.D. Ruiz-Medina, J. Alvarez-Liébana, Strongly consistent autoregressive predictors in abstract Banach spaces, Journal
of Multivariate Analysis (2018), https://doi.org/10.1016/j.jmva.2018.08.001.



https://doi.org/10.1016/j.jmva.2018.08.001
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
mailto:mruiz@ugr.es
mailto:javialvaliebana@ugr.es
https://doi.org/10.1016/j.jmva.2018.08.001

2 M.D. Ruiz-Medina, J. Alvarez-Liébana / Journal of Multivariate Analysis i (NNEE) NER-REN

which considers semi-metric spaces; see, e.g., [17], where asymptotic normality is derived, in the regression model with
functional response and covariates. In particular, a linear combination of the observed response values is considered, in the
nonparametric local-weighting-based approach. Here, the weights are defined from an isotropic kernel depending on the
metric or semi-metric of the space in which the regressors take their values; see, e.g., [ 18], and, in particular, [16] in the
functional time series framework. However, the more flexible nonparametric approach also presents some computational
drawbacks, requiring the resolution of several selection problems. For instance, a choice of smoothing parameter and the
kernel involved in the definition of the weights should be performed. Real-valued covariates were incorporated in the
semiparametric kernel-based proposal by Aneiros-Pérez and Vieu [5], which involves an extension to the functional partial
linear time series framework; see also [4] on semi-functional partial linear regression. Goia and Vieu [20] also adopted
a semiparametric approach in their formulation of a two-term Partitioned Functional Single Index Model. Geenens [19]
exploited the alternative provided by semi-metrics to avoid the so-called curse of dimensionality.

In a parametric linear framework, functional time series models in Banach spaces were introduced in [26]. Strong mixing
conditions and the absolute regularity of Banach-valued autoregressive processes were studied in [1]. Empirical estimators
for Banach-valued autoregressive processes were discussed in [10] where, under some regularity conditions, and for the
case of orthogonal innovations, the empirical mean was shown to be asymptotically optimal, with respect to almost sure
convergence and convergence of order 2. The empirical autocovariance operator was also interpreted as a sample mean of an
autoregressive process in a suitable space of linear operators. The extension of these results to the case of weakly dependent
innovations was obtained in [14]. A strongly consistent sieve estimator of the autocorrelation operator of a Banach-valued
autoregressive process was considered in [30]. Limit theorems for a seasonality estimator were given in [28] in the case
of Banach autoregressive perturbations. Confidence regions were also obtained for the seasonality function in the Banach
space of continuous functions. An approximation of Parzen’s optimal predictor in the RKHS framework was used in [27] to
predict temporal stochastic processes in Banach spaces. The existence and uniqueness of an almost surely strictly periodically
correlated solution to the first order autoregressive model in Banach spaces was derived in [29]. Under some regularity
conditions, limit results were obtained for ARD(1) processes in [15], where D[0, 1] denotes the Skorokhod space of right-
continuous functions on [0, 1] having a left limit at all t € [0, 1]. Conditions for the existence of strictly stationary solutions
of ARMA equations in Banach spaces with independent and identically distributed noise innovations can be found in [32].

In deriving strong consistency results for ARB(1) component-wise estimators and predictors, Bosq [9] restricted his
attention to the case of the Banach space [0, 1] of continuous functions on [0, 1] with the sup norm. Labbas and Mourid [25]
considered an ARB(1) context, for an arbitrary real separable Banach space B, under the construction of a Hilbert space H,
where B is continuously embedded as in Kuelbs’ lemma [24]. Assuming the existence of a continuous extension to H of the
autocorrelation operator p € £(B), they proved the strong consistency of the formulated component-wise estimator of p
and of its associated plug-in predictor in the norms of £(H) and H, respectively.

The linear time series framework in Banach spaces studied here is motivated by the statistical analysis of temporal
correlated functional data in nuclear spaces, arising notably in the observation of the solution to stochastic differential or
fractional pseudodifferential equations; see, e.g., [7,8]. The scales of Banach spaces constituted by fractional Sobolev and
Besov spaces play a central role in the context of nuclear spaces. Continuous (nuclear) embeddings usually connect the
elements of these scales; see, e.g., [33]. In this paper a Rigged-Hilbert-Space structure is defined, involving the separable
Hilbert space H appearing in the construction of Kuelbs’ lemma [24]. A key assumption here is the existence of a continuous
(Hilbert-Schmidt class) embedding introducing the RKHS associated with the extended autocovariance operator of the
ARB(1) process, into the Hilbert space generating the Gelfand triple, equipped with a finer topology than the B-topology.
Under this scenario, strong consistency results are derived in the space £(B) of bounded linear operators on B, considering
an abstract separable Banach space framework.

This paper is structured as follows. Background material and notation are first given in Section 2. Section 3 states the basic
assumptions and key lemmas which are then proved in Section 4. This paper’s main strong consistency result is derived in
Section 5, and examples are presented in Section 6. Closing comments are in Section 7. The results are illustrated numerically
in an Online Supplement under the scenario described in Section 6.

2. Preliminaries

Let (B, ||-|lp) be a real separable Banach space equipped with the norm ||-||z and let ﬁfg(ﬂ, A, P) be the space of zero mean
B-valued random variables X such that

// IX[12dP < oco.
B

Let X = {X, : n € Z} be a zero mean B-valued stochastic process on the probability space (§2, A, P) such that, for all
nez,

Xn:p(xn—1)+8n» (1)

where p € £(B)denotes the autocorrelation operator of X; see [9].In Eq. (1), the B-valued innovation process ¢ = {¢, : n € Z}
on (§2, A, P) is assumed to be a strong white noise uncorrelated with the random initial condition. Thus ¢ is a zero mean
Banach-valued stationary process with iid components and 03 = E{llen ||§} < ooforalln € Z.
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Assume that there exists an integer jo € {1, 2, ...} such that

ol e < 1. (2)

Then Eq. (1) admits a unique strictly stationary solution with 0)? = E{|IX; ||,23} < 00, i.e., belonging to cﬁ(Q, A, P), given by
Xn = Zjezpi(sn,j), for each n € Z; see [9]. Under (2), the autocovariance operator C of an ARB(1) process X is defined from
the autocovariance operator of Xy € Eﬁ(Q, A, P)as C(x*) = E{x*(Xo)Xo} for all x* € B*, and the cross-covariance operator D
is given by D(x*) = E{x*(Xp)X;} for all x* € B*. Since C is assumed to be a nuclear operator, then as per Eq. (6.24) on p. 156
of [9], there exists a sequence {x; : j > 1} C B such that, for every x* € B,

o0 o0
2
Cx*) = E X*(x;)x;, E lIx;ll5 < oo.
j=1 Jj=1

If D is also assumed to be a nuclear operator, then, as per Eq. (6.23) on p. 156 of [9], there exist sequences {y; : j > 1} C B
and {xj** :j = 1} € B** such that, for every x* € B*,

o]
D(x') =Y " x*( )y Y Il x llyjll < oo
j=1 j=1

From Egs. (6.45) and (6.58) on pp. 164-168 of [9], empirical estimators of C and D are respectively given, for all x* € B* and
any integer n > 2, by

n—2

1 1
Gilx) = I;x* %) (%), Dulx')= — gx* Xi) (K1) -
Lemma 2.1 in [24], recalled just below, plays a key role in our approach.

Lemma 1. If Bis a real separable Banach space with norm ||-||5 , then there exists an inner product (-, -) on B such that the norm
Il , generated by (-, -), is weaker than |||z . The completion of B under the norm ||-|| defines the Hilbert space H, where B is
continuously embedded.

Denote by {x, : n > 1} C B adense sequence in Band by {F, : n > 1} C B* a sequence of bounded linear functionals on
B satisfying

Fy (%) = llxnllg,  IFall = 1, (3)
such that, for all x € B,

lIxllp = sup [Fp(x)] - (4)

n>1

The inner product (-, -)5, and associated norm, in Lemma 1, is defined, for all x, y € H, by
o0
x¥g= Z tnFa(X)Fa(y),
n=1
while for all x € B,
(o]
X% =" talFa(x)}? < X113 . (5)
n=1
where {t, : n > 1} is a sequence of positive numbers summing up to 1.

3. Main assumptions and preliminary results

In view of Lemma 1, foreveryn € Z, X, € B — H satisfies almost surely,

oo

> X, v

j=1

Xn

=]l

where {v; : j > 1} is any orthonormal basis of H. The trace auto-covariance operator

o0 o0
C=Eq | D vy | ® [ D tXa. vy
j=1 j=1
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of the extended ARB(1) process is a trace operator on H admitting a diagonal spectral representation in terms of its
eigenvalues {G; : j > 1} and eigenvectors {¢; : j > 1} that provide an orthonormal system in H. In what follows, the
next identities in H will be considered, for the extended version of ARB(1) process X. For arbitrary f, h € H,
o]
CH) =Y _Gif. ¢ ¢ (6)

j=1

justd

Nk
Nk

D(h) (D(9;). Pic)ii (h. D Pres

==

1 1

=~
Il

J

Cn(f) ﬁ:a ch](f ¢n] H¢le7 (7)

1 n—1
Grj = ZX,Z,U, Xinj = Xis $nj)ii> Calen,) el Coj &nj»

as. n

i=0

0o 0
k

o]
-

¢n] ¢nk (h ¢n]> ¢’n,k7 (

S j=1 k=1

where, for arbitrary integer n > 2, {¢,; : j > 1} is a complete orthonormal system in ﬁ, and Gy > -+ > Cyp =0 =

Cn,n-H = Cn,n+2 =
The following assumption plays a crucial role in the derivation of the main results in this paper.

Assumption Al. ||X,||p is almost surely bounded, and the eigenspace V; associated with G; > 01in (6) is one-dimensional for
every integerj > 1.

Under Assumption A1, we can define the following quantities:

1
4 =2v2 ——— . a =22 max
! G-G 7 <Cf

1
: . j=2 (9)
-1=G G =G

Remark 1. This assumption can be relaxed to consider multidimensional eigenspaces by redefining the quantities a4, ay, . . .
as the quantities ¢y, ¢3, . .. given in Lemma 4.4 of [9].

Assumption A2. Let k, be such that G, x, > 0 a.s., and both k;, — oo and k,/n — 0asn — oo.

Remark 2. Consider
A= sup (G—GCyp) " (10)
Jje{1,....kn}
Then for sufficiently large n, we have

kn

<, < Ay, < E a;.
j=1

1

ky<C 'l ——
ki
n Ckn — Ckn+]

Assumption A3. As k — oo,

k

sup [[p(x) = > {p(x), $))zd| — O.

xeB, |Ixllp=1 i
j=1 B

Assumption A4. The constants {C; : j > 1} are such that the inclusion of #(X) into H* is continuous, ie., H(X) — ﬁ*, where
< denotes the continuous embedding.

Let us consider the closed subspace H of B with the norm induced by the inner product (-, -)y defined as follows:

H=1{xe€B: Y {FX) <ool, Vrgen 8=y Ful)Fa(g). (11)

n=1

Then H is continuously embedded into B and the following remark provides the isometric isomorphism established by the
Riesz Representation Theorem between the spaces H and its dual H*.
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Remark3 Letf*, g* € ﬁ* andf g € H, such that, for every integer n > 1, consider Fy(f*) = o Fy (i =/t Fa(8
and F,(f) = /ta Fa(f), Fu(8) = /t, Fa(g) for certain f, g € H. Then the following identities hold:
o0
(f*vg*>ﬁ*=2 Fn(f an)—z «/a\/an Fn (ng—ZtnFn Fn )=<fsg)ﬁ'
n=1 n=1

Lemma 2. Under Assumption A4, the following continuous embeddings hold:

H(X)<—>’I-7*C—>B*<—>H<—>B<—>ITIC—> {(HX)Y, (12)

where

=all
Il

XeB: Y tlFax) < oo} s Vigen F8)7 =) taFalf)Falg),

n=1 n=1

H= xeB:Z{F 2<oo}, V5 geH (f,g)H=ZFn(f)Fn(g)

n=1
(o]
H = xeB:Z

H(X) = (x € H; <c 1(x) Xi <00}, Vygecrngy (8)noo = (€8
{H(X)}* = {X € Ha (C(X),X)ﬁ < OO}! Vf,geC—l/z(ﬁ) (f7 g){’H(X)}* = (CU_)7 g)ﬁ

n=1

"?"_‘

< OO] ’ Vf,geﬁ* (f’ g)ﬁ" = ZFn(f)Fn(g)/tm

n=1

Proof. Let us consider the following inequalities, valid for all x € B such thatx H*:

Zrn{F RF < lIxlls = SUpIF, (X))

n=1
o0
Ixls = suplFy(x Z Fa = X1 < D IFalx)] = lIxllge,
n=1
(o]
Xl = Y IFa(x)] < ()Y = Xl (13)
n=1

Under Assumption A4 (see also Remark 3), for every f € C”z(ﬁ) = H(X), we have

Ifllzy = (). N = Ifllg- = (14)

From Eqs. (13) and (14), the inclusions in (12) are continuous. Thus the proof is complete. O
It is well known that the set {¢; : j > 1} is also an orthogonal system in 7#(X). Furthermore, under Assumption A4, from
Lemma 2, {¢j : j > 1} C H(X) — H* < B* < H.Therefore, from (11), for everyj > 1,

oo

Igill7 =Y {Fm(ey))* < oo. (15)

m=1

The following assumption is now considered on the norm (15).

Assumption A5. The continuous embedding iz;x)n : H(X) < H belongs to the Hilbert-Schmidt class, i.e., Z] ]||¢j||H < 00.
Let {F,, : m > 1} be defined as in Lemma 1. Assumptlon A5 leads to

o0

D iroon (@) i n($)m Z {Fu(g)))* = ZNm < 00, (16)

j=1 Jj=1 m=1 m=1

where, in particular, from (16),
[o] o0 o]
=Y (Fu(¢)}* < 00, SUpNy =N < 0o,V = sup ;s < DO {En()) < oo (17)

: m=
— = j=1 m=1
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The following preliminary results are deduced from Theorem 4.1 (pp. 98-99), Corollary 4.1 (pp. 100-101), and Theo-
rem 4.8 (pp. 116-117) in [9].

Lemma 3. Under Assumption A1, the following identities hold, for any standard ARH (1) process, e.g., the extension to H of ARB(1)
process X satisfying Eq. (1), asn — oo:

IGy — Clls = ©lIn(m)/n}*1 as., Dy — Dl s = Ol{In(n)/n}"/*] as. (18)
Here, — ¢ denotes almost surely convergence, and ||- IIS(H) is the norm in the Hilbert space S( ) of Hilbert-Schmidt operators on

H,ie., the subspace of compact operators A such that Z —1{(A*Alg)), )i < oo, for any orthonormal basis {g; : j > 1} of H.

Lemma 4. Under Assumption Al, let {G; : j > 1} and {G,j : j > 1} in (6) and (7), respectively. Then, as n — oo,
{n/ln(n)}l/zsupjzl |Cn,j - Cj|_> as.0.

The following lemma is Corollary 4.3 on p. 107 of [9].

Lemma 5. Under Assumption Al, consider Ay, in (10) satisfying Ay, = o[{n/In(n)}/?], as n — oo. Then, asn — oo,

sup ¢} — dnlli— as0.
jel{l,....kn}

where, for every integer j > 1andn > 2, ¢ = sgN(¢nj, Pj)iiPjs SENUPnj, D)t = Vignjitp5=0 — Lign )iy <0s with 1 denoting
an indicator function.

An upper bound for ||c||gys = IIZ —1Gi#i ® ¢jllgxs is obtained next.

Lemma 6. Under Assumption A5, the following inequality holds:
lcllpxp = sup IC (Fn) (F)| = NIICll 2wy »
n,m=

where N has been introduced in (17), c(FI) denotes the space of bounded linear operators on FI, and |||l o, the usual uniform
norm on such a space.

Let us consider the following notation:

(o] o] [,
c = C’,® — Copi @ ¢i, ¢ = C.. ® "
= ; 191 © $hj = ]Z 91® 9. = JZ nitni © b

c-a = qu,ww Zcmqsn]@qsn, (19)

j=1

Remark 4. From Lemma 3, for sufficiently large n, there exist positive constants K; and K, such that, forall ¢ € H,

Ki{C(e), 0)ii = (Gal9), 0)ii = K2(Ce), 9)7-
In particular, for every x € #(X) = C/2(H), considering n sufficiently large, we find

1 1 1
-1 - -1 —1 - 2 -1 ~ 2
—(CT (%), x5 = (G (%), x) = E< . x5 < K IX%x) = (Cr (%), %) = I 1%11%4x)- (20)

Eq. (20) means that, for sufficiently large n, the norm of the RKHS #(X) of X is equivalent to the norm of the RKHS generated
by C,, with spectral kernel c, given in (19).

Lemma 7. Under Assumptions A1- A5, consider Ay, in (10) satisfying

VA, = ofy/n/In(n)} (21)

as n — oo, where k, has been introduced in Assumption A2. The following almost sure inequality then holds:

llc — cnllgxp < max(N, VN) [||C — Call oy + 2 max <\/||C||g(ﬁ)7 \/||Cn||£(ﬁ)) |:SUP sup|Fe(¢;, )|]

£>1 m>1

o0
x| kn8AZ NCo = CI2 5+ D Ndnm — Spmll;

m=kn+1

Therefore, ||c — cpllgxg — as.0 asn — oo.

Please cite this article in press as: M.D. Ruiz-Medina, ]. Alvarez-Liébana, Strongly consistent autoregressive predictors in abstract Banach spaces, Journal
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Lemma 8. For a standard ARB(1) process satisfying Eq. (1), under Assumptions A1- A5, consider Ay, in (10) such that

Ck_nl\/ijkn = ofy/n/In(n)} (22)

asn — oo, where ky, has been introduced in Assumption A2. The following inequality then is established

2
swp on =00l = & {maxwf[uc Call gy + 2 max (/1€ 2y /1 ||L(H){supsup|n(¢,;,m)|}

£>1 m>1

[e]
x| ke84 G = CI2 5+ Y ||¢n,m—¢,;,m||,%}

m=kp+1
+ SUD’ }||¢n,j — & jllENICll sy + VIC — Cn||s(171):| as. (23)
Therefore, under (22), supje(q, . g,y |#nj — ¢>{w.||3—> 050, asn — oo.

Lemma 9. Under Assumption A3, if Z}‘; lpnj — ¢,’1J||B—> ws.0asn — oo, then also

kn

Sup o0 - D (), Gu)idni| — asO- (24)
X€B, ||x|lp=< =1 5

Remark 5. Under the conditions of Lemma 8, Eq. (24) holds as soon as
G 'k Ay, = ofy/n/In(n)}.

Let us know consider the projection operators defined, forallx € B C H, by
kn kn

) = (% nj)injs 1" (X) =Y (X ¢, ). (25)

j=1 Jj=1

Remark 6. Under the conditions of Remark 5, let

kn  kn

o p* =" " (p(¢n). bnp)iibns @ bnp-
j=1 p=1
Then, as n — oo,

sup o(x ZZ X, Gn )i {0(Pnj)s Pnp)fiPnp| — asO-
j=1

n
XeB, |Ix]lp=<1
p=1 B

4. Proofs of the lemmas
4.1. Proof of Lemma 6

Applying the Cauchy-Schwarz inequality, we have, for all integers k, £ > 1,

o0 [e ]
|C(Fi, Fy)| = ZQFk $)Fu())| < Z F @)1 > GolF(ep))
j=1 j=1 p=1
o0 o]
< suplG| pACH) ZF« $))? = sup|Gly/NNy, (26)
pa = jz1

where {F, : n > 1} has been introduced in Eq. (3), and satisfies (4)—(5). Under Assumption A5, from Eq. (17),

lcllaxs = SuplC(Fk,Fe)l = sup sup|Gjly/NiNe = N sup|G| = N|[C]| (-
>1 j>1 Jj>1

This completes the proof. O

Please cite this article in press as: M.D. Ruiz-Medina, J. Alvarez-Liébana, Strongly consistent autoregressive predictors in abstract Banach spaces, Journal
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4.2. Proof of Lemma 7

First observe that

|C - Cn(Fk)(Flé)| = Z qu((p;,j)Flé((f’;,j‘) - Cn,ij(¢n,j)Fl(¢n,j)

IA

ZICJIIFk(qb,ﬁJ)I |Fe(dp ;) — Fe(én )l + SU?ICJ — G jlIFi(p ) )Fe(n )]
pur =

+ G jFe(pn ) IFi( @y ;) — Fieln j)-
Next note that the right-hand side is bounded above by

D GlR( 2 Y GiF($; ;) — Felgn )

j=1 j=1

+SUpIG; — Gyl Z{Fk )P Z{Fe )2

j=1 j=1

+ chj Fo(n )} chj Fk(¢n]) FI<(¢n,j)}2,

j=1 j=1

and that this upper bound is itself smaller than

ch{n(ab;,,-)—&wn,j)}z+su?|cj—cn,j|/ﬁk Ne+VNe | Y GujlFly ;) — Flgn )12
J>

Jj=1 = Jj=1

Now, the latter expression can itself be bounded above by

max(N, VN) | [ IClL iy Y (Ful); — du)¥? + 1IC = Call ciy + | 1Call iy D (B — bn)?
j=1 j=1

and hence, a fortiori, also by

max(N, VN) | I€ = Gall ey + | IC1 ey D D AFelh m 2 (B js )i — (Do BV
Jj=1 m=1
+ | 1Cal ey Y Y R PP Brmdi — (Prs D))
Jj=1 m=1

The latter expression can be rewritten as

3

max(N, VN) | IC = Gall ey + | IC 1L ey D _AFel@hmd> D _{(B)j» St — (b B )7V

m=1

+ | IGal i Z{Fk ¢nm}22{<¢,;,j, )il — (bnjs D)l | -

j=1

or equivalently as

max(N. VN) | IC = Gall ziiy + | IC 11 ety D _AFe@h )2 D {(Bnjs bnmdii — (b $pm)ii 2
m=1

j=1
+ [ 1Cal ey Y (Pl )V D _Alnjs Snmdii — (Dnjs S )i} | -
m=1 j=1
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and also as

o0
max(N, Jﬁ)[uc — Gallegiy+ [ ICH ) Y _{Fe(@h 2 bnm — Bl

m=1

+ ||cn||LH)Z{Fk }2||¢nm—¢;,m||,§}.

It is now easy to see that the latter expression is bounded above by

o0
max(N, VN) 1 I€ = Call iy + SUPIF(@,) IC 2y Y Nbnm — Bl
m=> —

(o]
+ SupIF(¢,)| 1Call ety D Ibnm — B mll?
m=

m=1

Recapping, we can then conclude that |C — C,(Fi)(F¢)| is smaller than the above term, and hence also

€ = Cu(FOFO)] < max(N, fN)[HC — Gall gy + max (/1C1 ey /1)

[sugmupn )l + SUpIF(® } Z pnm — Bl } (27)
m>
Note that, under Assumption A5, from Eq. (16), we have, for every integer k > 1,
su12|Fk(¢,/Lm)| < 0. (28)
m=

Thus, considering kj,, as given in Assumption A2, from Lemma 5, under (21), applying Eq. (18), as n — oo, we get

> lidnm = Gyl Zn«snm— brmll + Z pnm — Bl
m=1

m=kn+1

<k SUD lpnm — @)l + Z I — Dyl

‘l<m< n

m=kn+1
< knBAZ Gy — CI2 5, + Z I pnm — by mll (29)
m=kp+1
o0
< ka8AG NGy = Clis gy + D lbnm — & mllZ— 0. (30)
m=kn+1

From Eqs. (27)-(30), considering that under Assumption A5, we have

sup sup|Fi(¢y, )| < o0,

k>1 m>1

we conclude that ||c — cllgxp = supy ¢>1/(C — G )(F)(Fe)l— as0asn — co. O

4.3. Proof of Lemma 8
Let us first consider the following string of almost sure equalities:

Cn,j(¢n,j - ([’;,”) = Cn(d’n,j) - Cn,j(d),;,j) = (Cn - C)(d’n,j) + C(¢n,j - ¢;,1]) + (C] - Cn,j)‘p:l,f (31)

From Eq. (31), keeping in mind Assumption A2, we can write

1 1
|bnj = énill, < o (G = C)Xpnls + — ||C(¢n] o )lls + o (G — Cuj)by 8

1
= — (51 +S+S3), as. (32)
Guj
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For sufficiently large n, from Lemmas 6-7, applying the Cauchy-Schwarz inequality, we get

S1= ” (Cn - C) (¢n.j)”B = SUP ch kFm ¢n k)(¢n ks ¢n] Z CcFm ¢n k (¢n k> ¢n]>

k= k=

=sup | > > teFe(n ) HCokFin(Bn i Fe(Pni) — CeFim() Fe($) 1))

m=1 21 =1

=sup | > " teFe(¢nj) D CukFn(dnt)Feldni) — CeFm() 1 JFel( D) 1)

m=1 1 k=1

for every integer j > 1. Now the right-hand side can be bounded above by

2
sup Zumwn,)}z ZQ{ZCMF (@niFe(¢ni) — Ce m(qsnk)mcpnk)},
=1

m=Ty\[ =

which in turn, is smaller than

Z Cn kI'm ¢n k)F£(¢n k) Cka(qbr/«l,k)Fl((p;;,k)

k=1

= |lcn — CllBxB-

pn 117 Zfz sup

=1 m,¢

Thus S; is smaller than the latter expression, from which we can then deduce that

51 = max(w, fm[uc = Goll ey + 2max (/IC 1Lz |/ 1Galcn) {sup SuplF(¢) m)|}

£>1 m>1
o0
X | k84 G = ClI25 4+ Y lbnm — ;,mllg}. (33)
m=kp+1
Similarly,
o0 o0
S = € = 91,)lls = sup DO Gl (@) Fe($nj — &3)

k=1 ¢=1

00 2

=< sup Zté Fo(nj — nj Ztl[ZCka nkFK nk)}

m>1 1

< llgnj — &yl sup
m,¢>1

Z CiFn(, Fe(, 1)
k=1

= [lgnj — bnjllii X lIcllsxs < l¢nj — dpjlli x N x ICll scipy ass. (34)
Moreover, we see that under Assumption A5,

s3fsu?|q—cn.j|||¢;,jll < VIIC = Gill gy < VIC = Gallsgiy as. (35)
Jj=

In addition, it follows from Lemma 3 that ||G; — Cl| 5y~ 2.0, and, from Lemma 4, Cy j— a5.G; asn — oo. For e = G, /2, we
can thus find ng such that for n > ny,

G —Cllo@y <e= kn/2as Gty — Gl <€ < |Gy = Cllzciys

~

Cn,kn >Cp, — &> —1Gy — C”L(ﬁ) > Ckn - Ckn/z = Ckn/z- (36)

Please cite this article in press as: M.D. Ruiz-Medina, ]. Alvarez-Liébana, Strongly consistent autoregressive predictors in abstract Banach spaces, Journal
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From Eqs. (32)-(35), and for n large enough to ensure that Eq. (36) holds, the following almost surely inequalities are then
satisfied for allj € {1, ..., ky}:

, 1
sup  [lgn; — &) lls < C[max(N,W)[nc = Call iy + 2max (/1€ s |/ 1GalLc) {sup sup|Fy(g), )|}

Jje{1,....kn} n,kn =1 m>1

o0
X | k8AF G = ClI25 4+ Y lbnm — ;_mnﬂ

m=kn+1

+ _ {fup’ ] lpnj — d’,/””ﬁN ||C||s(171) + V|C - Cn||$(ﬁ):|,
Jeil,....kn

and, from Eq. (36), the right-hand term is bounded above by

2
o [max(lv, W){nc — Gollzqny + 2max (/1€ ey /1ol i) {sup sup|Fy(¢), m)|}

>1 m>1

o0
x| kn8AR ICo = CI2 5+ D ||¢n,m—¢,;,m||,§}

m=kp+1
+ sup  lgn; — & IENICI s + VIC — Cn||s(ﬁ):| as
je{1,....kn}

Hence, Eq. (23) holds. The almost sure convergence to zero directly follows from Lemma 3, under (22). O

4.4. Proof of Lemma 9

The following identities are considered:

kn kn kn
D o), buditn — Y _(P(X). by ibh; = Y (PX). $uii(bnj — B +Z X). bnj — 1 )b (37)
j=1 j=1 j=1

From Eq. (37), applying the Cauchy-Schwarz inequality, under Assumption A3, we find

kn [e9)
S D (o), ¢n it — D _(0(x), B )i
X€B, ||x|lp=< j=1 j=1

B

< sup Z IoCONF x llpnjll > Idnj — bnjlle + 1ol % Ninj — bpjlli < lldnlls

XeB, HX|\B<l
o0
+ sup Z (p(x), ¢y )i
xeB, Ixllp=1 ||, 5 4

B
Now the right-hand side can be bounded above by

kn o]
sup ol | Y lgnj — @rlls + ldn — dpjlssup lignslls |+ sup | D (p(x). &, )adh| -
xeB, |x||g<1 par j=1 xeB, |x|lp=<1 i1 5
and the latter expression is smaller than
n o0
sup oK+ VD Ini = iylls+ sup | 37 (o). 6 )b,
xeB, |xllp= =1 XeB. IIxllp=1 ;2 74 5

One can then conclude because this last expression is itself smaller than

kn -
2o+ V) Wns = dhslls+ sup | D (p(x). 0),)5¢n, | -
pa xeB. IIxllp=1 |, 57 q

B
which tends a.s. to 0 as n — oo. This concludes the proof. O
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5. ARB(1) estimation and prediction: Strong consistency results

For everyx € B C ﬁ, the following component-wise estimator py, of p will be considered:

kn

B (%) = (DG T ) () = 1 )~ —

j=1

)i " Dy(pnj) {
nj

where I7% has been introduced in Eq.(25),and Gy, Gy, ¢nj and D, have been defined in Eqs. (7)-(8), respectively.

Theorem 1. As before, let X be a standard ARB(1) process. Under the conditions of Lemmas 8 and 9 (see Remark 5), forall n > 0,

Pr (IIBk, — £llpy = 1) < Kexp(—nn?/Qy),

where
@=014[¢ ke Zaj

as n — oo. Therefore, if

kn
knCp. ! Za]— = o{y/n/In(n)},
j=1
asn — oo, then also, ||k, — ol c(8y— a.s0.

Proof. For every x € B, such that || x|z < 1, applying the triangle inequality, under Assumptions A1 and A2,
174D, G, T (x) — T p T ()l < T (D, — D)C, T (X)lls + I1TT*(DC, " — p) T (%)ll5 = S1(x) + Sa(x). (38)

Under the conditions assumed in Lemma 9, considering inequality (36),

$1(x) = |[IT*(D, — D)C, ' TT*"(X)]|s < | Co, ZZ X, 6n)ii{(Dn = D)(@n 1), bnp)iibnp

j=1 p=1 B
kn  kn kn
<Gt | D2 1% )il X [((Dn = DX(@n): Sup)iil X dnplls < 2C;, kallDw = Dl ity D g plls
j=1 p=1 p=1
< 2VC,. 'K2(| Dy — Dl 5¢iy- (39)

Furthermore, applying the triangle inequality, we find
Sa(x) = ITT*(DC;" = p)T*(X)lg
< |1*%DC, T (x) — [T*DC T ()]l + 1T DC ™ T (x) — TT* pTT* (X)lls = S22 (%) + Spa(x). (40)

Under Assumptions A1-A2, C~! and Cn‘1 are bounded on the subspaces generated by {¢; : j € {1,...,k,}} and
{pnj:je{1,..., ky}}, respectively. Consider now

Sn(x) = ||ﬁ""Dc”ﬁ""(x) — [*DC Tk (%)

= ZZ X d’n,j_d);,q,j) ( (¢nj) ¢np H¢np+ZZ (F - *> X, ¢n]) ( (¢n,j)s ¢n,p>ﬁ ¢n,p
n,Jj

j=1 p=1 j=1 p=1
kn kn
+ Z Z X ¢n] (¢n.j - ¢r/1,j)’ ¢n,p>ﬁ ¢'n,p
j=1 p=1 B
Note that
Sn(x) < ZZ ¢ — bl x DN oy % i plls
j=1 p=1 n,
1 /
+|— - — | IDll gty X Npnj — by il X ldnpllp- (41)
Cnj G
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From Lemma 4.3 on p. 104 of [9], for every integer j > 1, under Assumption A1,

énj — bnjlli < allCr — Cll 2(3), (42)

where g; has been introduced in (9). Then, in Eq. (41), considering again inequality (36), keeping in mind that Cj’] < gj, we
obtain

kn

kn n
$21(x) <5C" > " bnplls X 1D cqiiy X 1Go — Cll ety Y & < 5VkaC D ity X 1Ca — Cllsiy Y - (43)
p=1 j=1 j

Applying again the triangle and Cauchy-Schwarz inequalities, we deduce from (42) that
Sp = ||ﬁk"Dc”n’<n(x) — I p T ()]s

= ZZ — Sn )i (P( D). Dnp)ii Brp + (% BV (P(Dj — bns): Bup)ii P
j=1 p=1 B
kn  kn

<D0 Il x ligny — il x Uolleg x 160,07 X Idnpla x llgnplls

j=1 p=1
XI5 % lgnili x 1ol X 105 — Gajlli < Idnpli X Idnpls
kn kn

< 2ol iy x 1Co = Cllsgay | D Inplls | | D ay

p=1 j=1
kn

< 2VlIpll iy X G — Cllsgikn Y aj. (44)

j=1

From Egs. (38)-(44),

sup | ITDyCy T (x) — IT* pIT* (x)||5 < 2VC 'K2 Dy — Dl ¢y

xeB, |Ix|lp=1

kn

HICo — Clls@2Vkn Y 1(5/2C 1D 2y + 1ol o) (45)
j=1
From Eq. (45), applying now Theorem 4.2 (p. 99) and Theorem 4.8 (p. 116) in [9], we get, for any > 0,

Pr( sup  |[[T*D,C; Tk (x) — IT* pIT*n (x)||5 > n)
X

€B, ||x|lp=<1

sPr{ sup 51(X)>n}+Pr{ sup SZI(X)+522(X)>77}

xeB, |Ix|lp=<1 XeB, |Ix]lp=<1

n n
Pr{ 1Dy — Dlls@) > == | T Pr{ G — Clls@) >
( 2VC, k2 2Vkn Yo a5 [5/2C DI cqity + 101 iy
{ "
(2ve, ')’ [y + 8tn/(2ve;, k)]

with y and § being positive numbers, depending on p and Py, respectively, introduced in Theorems 4.2 and 4.8 of [9]. Here,

< 8exp

:| + 4exp(—nn*/Qn), (46)

kn

_ 2 n
Q=422 a | {5/2C 1Dl iy + ol iy} x o + B ., (47)
" Z 2Vky, Z 1 Gj (5/2Ckn ||D||£(H + ”p”L(H))
Where agam a; and B; are positive constants depending on p and P, respectively. From Egs. (46)-(47), we see that if

k,,C } "G = o{ n/In(n )} asn — oo, then, the Borel-Cantelli Lemma, and Lemma 9 lead to the desired almost sure
convergence to zero (see also Remarks 5-6). O

Corollary 1. Under the conditions of Theorem 1, ||k, (Xn) — p(Xn)llp— 050 as n — oo.

The proof is straightforward from Theorem 1 because || 5k, (Xn) — 0(Xn)llzg < 5k, — £l 28y 1 Xoll5—> .50 as n — oo under
Assumption Al.
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6. Examples: Wavelets in Besov and Sobolev spaces

It is well known that wavelets provide orthonormal bases of L*(R), and unconditional bases for several function spaces
including Besov spaces, B, , withs € Rand 1 < p, q < oo. Sobolev or Holder spaces constitute interesting particular cases
of Besov spaces; see, e.g., [33].

Consider now orthogonal wavelets on the interval [0, 1]. Adapting wavelets to a finite interval requires some modifica-
tions as described in [11]. Let s > 0 for an ([s] 4+ 1)-regular Multiresolution Analysis (MRA) of L?[0, 1], where [-] stands for
the integer part. The father and mother wavelets ¢ and v are such that ¢, v € c1*1[0, 1]. Also ¢ and its derivatives, up to
order [s] + 1, have a fast decay; see Corollary 5.2 in [13].

Given J such that 2 > 2([s] + 1), the construction in [11] starts from a finite set of 2/ scaling functions {g; : k €

{0,...,2) —1}).Foreachj > J, aset 2/ wavelet functions {Yik:kel0,..., 2/ — 1}} are also considered. The collection of
these functions {gx : k € {0,...,2 — 1}}and {jx : k € {0, ..., 2" — 1}} withj > ] form a complete orthonormal system
of I2[0, 1]. The associated reconstruction formula is given, for all t € [0, 1] and f € [?[0, 1], by
21 0o 2-1
FO =" el )+ > Bl (48)
k=0 j=] k=0

where

1
a]f.k:/ F(©)pyr(t)de

forallk € { ,2 —1}and

k / f w] k

forallk € {0,...,2 — 1} withj > J.
The Besov spaces B}, /[0, 1] can be characterized in terms of wavelets coefficients. Specifically, denote by S’ the dual of S,
the Schwarz space. Then f € S’ belongs to Blsqu[O, 1] forsomes € Rand 1 < p, q < oo if and only if

1/q
o0

WFIS g = llp = Fllp+ 4 Y (25N «fllp)" } < oo (49)

=1

For B > 1/2, consider a self-adjoint positive operator T :H, ﬂ[0 1] — Hﬂ [0, 1] on 1[0, 1] belongmg to the unit ball of
trace operators on L2[0, 1]. Assume that 7 : Hy [0 1] — H [0,1]and 77! H [0,1] — H, [0 1] are bounded linear
operators. In particular, there exists an orthonormal basis {v,< : k > 1} of L?[0, 1] such that, for every ¢ > 1, T(v;) = tevg,
with )", te = 1.

In what follows, consider {v, : £ > 1} to be an orthonormal wavelet basis, and define the kernel t of T, for all s, t € [0, 1],
by

21 1 0o 2-1
=7 Zw S+ Sy D 9 2 P )
j= k=0

InLemma 1, (Fy) = {F’, Tk ckefo,...,2 —1}ju { :ke{0,...,2 —1,j>]}} are then defined as follows:

J.k -
Fle=wo kefo,....2 -1}
Flo= i kel(0....2—1), j=]. (50)

Furthermore, the sequence (tm) = {¢t/, : k € {0,...,2/ —1}}U {t;f’k :ke{0,...,2 —1},j > ]} involved in the definition of
the inner product in H, is given by

1
@ J—1
tj,k_zj’ ke{0,...,27'}.
228 _1q . .
14 -2 -1 .
Gk = Sz 2 B, kelo,..., 27, j=]. (51)

In view of Proposition 2.1 in [6], the choice (50)—(51) of (Fy) and (tm) leads to the definition of H = {Hf [0, 1]} =
H;ﬂ [0, 1], constituted by the restriction to [0, 1] of the tempered distributions g € S'(R), such that (I — A)~#/2g € [*(R),
with (I — A)~#/2 denoting the Bessel potential of order g; see [33].

Please cite this article in press as: M.D. Ruiz-Medina, ]. Alvarez-Liébana, Strongly consistent autoregressive predictors in abstract Banach spaces, Journal
of Multivariate Analysis (2018), https://doi.org/10.1016/j.jmva.2018.08.001.




M.D. Ruiz-Medina, J. Alvarez-Liébana / Journal of Multivariate Analysis I (NNEN) INE-REN 15

Now define B = Bgo_oo([O, 1],) and B* = B?J[O, 1]. From Eq. (49), the corresponding norms, in terms of the discrete
wavelet transform introduced in Eq. (48), are respectively given, for every f € B, by

Il = sup {lof . k € 0.2 ) |B]il ke 0, ... 2 = 1).5 2]
and for every g € B*, by

21 o 2-1
gl =Y lafil + DD 1B
k=0 j=/ k=0

Therefore,
B* =B [0, 1] = H =[%[0,1] < B=B% < H=H,"[0,1].

Also, for § > 1/2, H* = HP[0, 1] < B* = B? [0, 1].
For y > 28, consider the operator C = (I — A)77, i.e, given by the 2y /8 power of the Bessel potential of order

B, restricted to L?[0, 1]. From spectral theorems on spectral calculus stated, e.g., in [33], we have that, for every f €
CYX{H=Fl0, 1]},

||f||3{(x) = (CT') Hu-sro.n = (I — A)P2CTAL U= AP (2o
Z 211 =AYy > Zf% (= AYY = 1f 0, = I3

j=1
where, for every integerj > 1,

1
fi= / F(s)pj(s)ds
0

with {¢ : j > 1} denoting the eigenvectors of the Bessel potential (I — A)~#/2 of order B, restricted to L?[0, 1], and
(AU — A)Y =P} : j > 1} being the eigenvalues of (I — A)"#C~1 on [?[0, 1]. Thus, Assumption A4 holds. Furthermore,
from Embedding Theorems between fractional Sobolev spaces (see [33]), Assumption A5 also holds, under the condition
y > 2B > 1, considering H = L*[0, 1].

7. Final comments

Section 6 illustrates the motivation of the presented approach in relation to functional prediction in nuclear spaces.
Specifically, the current literature on ARB(1) prediction has been developed for B = C[0, 1], the space of continuous functions
on [0, 1], with the sup norm (see, e.g., [2,9]), and B = D[0, 1] consisting of the right-continuous functions on [0, 1] having
a left limit at every t € [0, 1], with the Skorokhod topology; see, e.g., [15]. This paper provides a more flexible framework,
where functional prediction can be performed, in a consistent way, for instance, in nuclear spaces, as follows from the
continuous inclusions showed in Section 6. Note that the two above-referred usual Banach spaces, C[0, 1] and D[0, 1], are
included in the Banach space B considered in Section 6; see the Online Supplement for the results of a simulation study.
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