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Abstract
This work adopts a Banach-valued time series framework for component-wise estimation and prediction, from temporal

correlated functional data, in presence of exogenous variables. The strong-consistency of the proposed functional estimator

and associated plug-in predictor is formulated. The simulation study undertaken illustrates their large-sample size prop-

erties. Air pollutants PM10 curve forecasting, in the Haute-Normandie region (France), is addressed by implementation of

the functional time series approach presented.
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Strong consistency

1 Introduction

Several approaches have been adopted in the analysis of

pollution data (see, e.g., Pang et al. 2009, for a comparative

study). In Zhang et al. (2018), the singular value decom-

position is applied to identify spatial air pollution index

(API) patterns, in relation to meteorological conditions in

China. A novel hybrid model combining Multilayer per-

ceptron model and Principal Component Analysis (PCA) is

introduced in He et al. (2015), to improve the air quality

prediction accuracy in urban areas. Factor analysis and

Box–Jenkins methodology are considered in Gocheva-

Ilieva et al. (2014), to examine concentrations of primary

air pollutants such as NO, NO2 , NOx , PM10, SO2 and

ground level O3 in the town of Blagoevgrad, Bulgaria.

Since PM10 are inhalable atmospheric particles, their

forecasting has became crucial aimed at adopting efficient

public transport policies. In the recent literature, one can

find several modelling approaches for PM10 forecasting.

Among the most common statistical techniques applied, we

mention multiple regression, non-linear state space mod-

elling and artificial neural networks (see, e.g., Grivas and

Chaloulakou 2006; Paschalidou et al. 2011; Slini et al.

2006; Stadlober et al. 2008; Zolghadri and Cazaurang

2006). Functional Data Analysis (FDA) techniques also

play a crucial role in air quality forecasting (see Febrero-

Bande et al. 2008; Fernández de Castro et al. 2005;

Ignaccolo et al. 2014, among others). Related meteoro-

logical variables can also be functional predicted from a

functional time series framework (see, e.g., Besse et al.

2000; Ruiz-Medina and Espejo 2012; Ruiz-Medina et al.

2014).

Computational advances have made possible the

implementation of flexible models for random elements in

function spaces. FDA techniques have emerged in the local

analysis of high-dimensional data, which are functional in

nature (see the monographs Goia and Vieu 2016; Horváth

and Kokoszka 2012; Hsing and Eubank 2015, and the

references therein). Parametric functional linear time series

techniques are fast and computational low-cost. In contrast

with the more flexible nonparametric functional statistical

approach (see, e.g., Ferraty and Vieu 2006), where the so-

called curse of dimensionality problem arises (see Geenens

2011; Vieu 2018). The semi-parametric framework also

provides a partial solution to this problem (see, e.g.,

Aneiros-Pérez and Vieu 2008; Goia and Vieu 2015, in the

semi-functional regression context). Particularly, the

approach presented allows a flexible analysis of the local
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variability of the functional values of the random variables

studied, as well as the derivation of strongly-consistent

functional plug-in predictors, under a state space based

framework.

From a theoretical point of view, parametric functional

linear time series techniques have been widely studied in

the last few decades. In particular, in the autoregressive

Hilbertian process framework, the asymptotic properties of

componentwise estimators of the autocorrelation operator,

and their associated plug-in predictors have been derived in

Bosq (2000), Mas (2004, 2007), among others. Recently, in

Álvarez-Liébana et al. (2017) and Ruiz-Medina and

Álvarez-Liébana (2019a), alternative operator norms for

consistency have been investigated. See also Álvarez-Lié-

bana et al. (2016), for the case of Ornstein–Uhlenbeck

process in Hilbert and Banach spaces.

The separable Banach space context has also been

adopted in linear functional time series modeling, under a

state space based approach. This literature has mainly been

focused on the spaces of continuous functions Cð½0; 1�Þ with

the supremum norm (see Bueno-Larraz and Klepsch 2018;

Dehling and Sharipov 2005; Labbas and Mourid 2002;

Parvardeh et al. 2017, among others), and on the Sko-

rokhod space of right-continuous functions on [0, 1],

having limit at the left at each t 2 ½0; 1�, equipped with the

Skorokhod topology, usually denoted as J 1-topology (see,

e.g., Blanke and Bosq 2016; El Hajj 2011). The lack of an

inner product structure, in the abstract Banach-valued time

series framework, is supplied in Ruiz-Medina and Álvarez-

Liébana (2019b) by considering suitable embeddings into

related Hilbert spaces. Strong consistency of a compo-

nentwise estimator of the autocorrelation operator and its

associated plug-in predictor is then proved.

A first attempt for the inclusion of exogenous informa-

tion in the functional time series framework can be found

in Damon and Guillas (2002, 2005), where the so-called

ARHX(1) processes (Hilbert-valued autoregressive pro-

cesses of order one with exogenous variables) are intro-

duced. Enhancements were subsequently proposed by

Marion and Pumo (2004). First order conditional autore-

gressive Hilbertian processes were introduced in Guillas

(2002). The present paper extends the time series frame-

work in Ruiz-Medina and Álvarez-Liébana (2019b) to the

case of first-order Banach-valued autoregressive processes

with exogenous variables (ARBX(1) processes). Functional

parameter estimation and plug-in prediction can be

addressed in our ARBX(1) context, from the multivariate

infinite-dimensional formulation of the results in Ruiz-

Medina and Álvarez-Liébana (2019b). Specifically, a

matrix-operator-based formulation of the ARB(1) process

(Banach-valued autoregressive process of order one) state

equation is considered. The required Hilbert space

embeddings, and sufficient conditions for the strong-

consistency of the autocorrelation operator estimator (re-

flecting temporal correlations between endogenous and

exogenous variables), and the associated plug-in functional

predictor are then obtained in a direct way. We refer to the

reader to Triebel (1983), where several examples of the

Banach space context introduced in Ruiz-Medina and

Álvarez-Liébana (2019b) can be found.

The outline of the paper is as follows. The ARBX(1)

based estimation and prediction methodologies presented

are described in Sect. 2. This section also contains the main

results of this paper (see Theorem 1). A simulation study is

undertaken to illustrate the consistency of ARBX(1) pre-

dictors in Sect. 3. PM10 short-term forecasting, based on

the introduced ARBX(1) framework, is addressed in Sect.

4. Final comments are provided in Sect. 5.

2 ARBX(1) estimation and prediction

In the following, the functional random variables and

stochastic processes introduced below are defined on the

basic probability space X;A;Pð Þ. Let B; �k kB
� �

be a real

separable Banach space with associated norm �k kB. Con-

sider X ¼ Xn; n 2 Zf g to be a zero-mean ARB(1) process,

with P Xn 2 Bð Þ ¼ 1; n 2 Z, satisfying the following state

equation (see, e.g., Bosq 2000):

Xn ¼ q Xn�1ð Þ þ en; n 2 Z; ð1Þ

where q is the autocorrelation operator, which is assumed

to be a bounded linear operator on B, that is, q 2 LðBÞ,
with LðBÞ; �k kLðBÞ

� �
denoting the Banach space of con-

tinuous operators with the supremum norm. Here, e ¼
en; n 2 Zf g represents the innovation process, which is

assumed to be a B-valued strong white noise, and uncor-

related with the random initial condition. In particular,

r2
e ¼ E enk k2

B

h i
\1, n 2 Z. From Bosq (2000, Theo-

rem 6.1), if there exists j0 � 1 such that q jk kL Bð Þ\1, for

every j� j0, then, Eq. (1) admits a unique stationary

solution Xn ¼
P1

j¼0 q
j en�j

� �
, with r2

X ¼ E Xnk k2
B

h i
\1;

n 2 Z.

In this paper, exogenous information is incorporated to

Eq. (1) in an additive way. Thus, the state space equation of

an ARBX(1) process is given by:

Xn ¼ q Xn�1ð Þ þ
Xb

i¼1

ai Zn;i
� �

þ en; n 2 Z; ð2Þ

where ai; i ¼ 1; . . .; bf g are bounded linear operators on B.

The exogenous functional random variables Zi ¼ fZn;i;
n 2 Zg; i ¼ 1; . . .; b, are assumed to satisfy the following

ARB(1) equation, for i ¼ 1; . . .; b,
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Zn;i ¼ ui Zn�1;i

� �
þ gn;i; ui 2 LðBÞ; n 2 Z: ð3Þ

For i ¼ 1; . . .; b; gi ¼ gn;i n 2 Z
� �

is a B-valued strong

white noise. Particularly, r2
gi
¼ E gn;i

�� ��2

B

h i
\1; n 2 Z,

i ¼ 1; . . .; b. Here, P Zn;i 2 B
� �

¼ 1, E Zn;i
	 


¼ 0B, n 2 Z,

for i ¼ 1; . . .; b. The symbol 0B means the zero element

(i.e., null function) in B. Equations (2)–(3) can be rewritten

as (see Damon and Guillas 2002),

Xn ¼ q Xn�1

� �
þ en; q 2 LðBÞ;

P Xn 2 B
� �

¼ P en 2 B
� �

¼ 1;
ð4Þ

where B ¼ Bbþ1 is also a real separable Banach space, and

Xn ¼

Xn

Znþ1;1

Znþ1;2

..

.

Znþ1;b

8
>>>>>>><

>>>>>>>:

9
>>>>>>>=

>>>>>>>;

; en ¼

en
gn;1
gn;2

..

.

gn;b

8
>>>>>>><

>>>>>>>:

9
>>>>>>>=

>>>>>>>;

;

q ¼

q a1 � � � � � � ab

0B u1 0B � � � 0B

0B 0B u2 0B
..
.

..

. ..
. . .

.
0B

0B 0B 0B � � � ub

8
>>>>>>><

>>>>>>>:

9
>>>>>>>=

>>>>>>>;

:

ð5Þ

Here, 0B represents the null operator on B. In Eq. (4), LðBÞ
denotes the space of bounded linear operators on B. The

norm in the separable Banach space B is given by

yk kB ¼ sup
n� 1

FnðyÞ
�� �� ¼ sup

n� 1

sup
i2f1;...;bþ1g

FniðyiÞj j;

Fn ¼ Fn1; . . .;Fnðbþ1Þ
� �

;
ð6Þ

for every y ¼ ðy1; . . .; ybþ1Þ 2 B ¼ Bbþ1. Here, for i ¼
1; . . .; bþ 1; fFni; n� 1g � BH is a sequence of bounded

linear functionals on B satisfying

Fni xnið Þ ¼ xnik kB; Fnik k ¼ 1; n� 1; ð7Þ

with fxni; n� 1g � B being a dense sequence in B (see

Lemma 2.1 in Kuelbs 1970 for more details). For simpli-

fication purposes, we consider a common dense system in

B, i.e., xn ¼ xni, and Fni ¼ Fn, for i ¼ 1; . . .; bþ 1, and

n� 1. We assume the conditions ensuring the existence of

a unique stationary solution to Eq. (4). That is, assume that

there exists a j0 such that kq jkLðBÞ\1, for all j� j0. The

following componentwise estimator of the autocorrelation

operator q in (4), based on a functional sample of size n, is

then formulated:

eqkn
ðxÞ ¼ eP

kn
DnC

�1

n
eP

kn
� �

ðxÞ

¼
Xkn

j¼1

1

Cn;j
hx;/n;jie

H

eP
kn
Dnð/n;jÞ

 !

;
ð8Þ

where for j� 1,

hx;/n;jie
H
¼ x;/n;j1

� 

eHþ

Xb

i¼1

xi;/n;jðiþ1Þ

D E

eH
;

8x ¼ ðx; x1; . . .; xbÞ 2 B;

with f/n;j ¼ ð/n;j1; . . .;/n;jðbþ1ÞÞ; j� 1g being the

orthonormal eigenvector system associated with

Cn ¼
1

n

Xn

i¼1

Xi � Xi;

the empirical autocovariance operator of the extended

version to eH ¼ eH
bþ1

, of X ¼ fXn; n 2 Zg. Here, the

Hilbert space eH is defined in Lemma 2.1 in Kuelbs (1970),

as the continuous extension of the separable real-valued

Banach space B (see also Lemma 1 in Ruiz-Medina and

Álvarez-Liébana 2019b). In particular, its inner product is

given by f ; gh ieH¼
P1

n¼1 tnFnðf ÞFnðgÞ, for f ; g 2 eH , with
P1

n¼1 tn ¼ 1, tn [ 0; n� 1. Note that eH has weaker topol-

ogy than B, allowing the continuous inclusion B,!eH , and

hence, B,!eH , holds. In (8), for each functional sample size

n, we have denoted

eP
kn

xð Þ ¼
Xkn

j¼1

hx;/n;jie
H
/n;j; 8x 2 B ¼ Bbþ1 � eH ¼ eH

bþ1
:

ð9Þ

Denote also by fCn;j; j� 1g, with Cn;1 � � � � �Cn;n �
0 ¼ Cn;nþ1 ¼ Cn;nþ2 ¼ � � �, the eigenvalues of Cn respec-

tive associated with the empirical eigenvectors f/n;j; j�
1g. The operator Dn ¼ 1

n�1

Pn�1
i¼1 Xi � Xiþ1 denotes the

empirical cross-covariance operator of the extended ver-

sion of Xn to eH .

As in Ruiz-Medina and Álvarez-Liébana (2019b), suf-

ficient conditions are now formulated to ensure the strong

consistency in the space LðBÞ (i.e., with respect to the

supremum norm in LðBÞ) of the componentwise functional

parameter estimator (8) of q, defined in terms of the

countable orthogonal system f/n;j; j� 1g in eH . Specifi-

cally, the following conditions are assumed:

• Assumption A1 kX0kB is almost surely bounded. The

eigenspaces associated with the eigenvalues of C ¼
E Xn � Xn

	 

are one-dimensional.
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• Assumption A2 Let kn be such that Cn;kn [ 0 a.s., and

both kn ! 1 and kn=n ! 0 as n ! 1. Here, Cn;kn

denotes the kn-th eigenvalue of Cn.

• Assumption A3 As k ! 1,

sup
x2B; kxk

B
� 1

qðxÞ �
Xk

j¼1

hqðxÞ;/jie
H
/j

�����

�����
B

! 0;

/j ¼ ð/j1; . . .;/jðbþ1ÞÞ; j� 1;

where Cð/jÞ ¼ Cj/j, j� 1, in eH .

• Assumption A4 Denote by HðXÞ the Reproducing

Kernel Hilbert Space (RKHS) generated by C. The

inclusion of HðXÞ into eHH
is continuous, i.e., HðXÞ,!

eHH
, is a continuous mapping, where eHH

denotes the

dual Hilbert space of eH .

• Assumption A5 The embedding iHðXÞ;H : HðXÞ,!H is

Hilbert–Schmidt. Here, H ¼ Hbþ1, with H being a real

separable Hilbert space such that eHH
,!H,!eH con-

forms a Rigged Hilbert space structure or Gelfand

triple.

The following result provides the strong consistency of

the componentwise estimator eqkn
of q, as well as of its

associated plug-in predictor eqkn
ðXnÞ of Xnþ1.

Theorem 1 Let X be the ARBX(1) process introduced in

Eqs. (4)–(5). Under Assumptions A1–A5, and the condi-

tions assumed in Ruiz-Medina and Álvarez-Liébana

(2019b, Lemmas 8–9), for all g[ 0,

P keqkn
� qkLðBÞ � g

� �
�K expð�ng2=QnÞ;

where

Qn ¼ O C�1
kn
kn
Xkn

j¼1

aj

 !2
8
<

:

9
=

;

as n ! 1. Here,

a1 ¼ 2
ffiffiffi
2

p 1

C1 � C2

;

aj ¼ 2
ffiffiffi
2

p
max

1

Cj�1 � Cj

;
1

Cj � Cjþ1

� �
;

j� 2:

ð10Þ

Therefore, if

knC
�1
kn

Xkn

j¼1

aj ¼ o
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n=lnðnÞ
p �

;

as n ! 1, then, kq� eqkn
kLðBÞ !a:s 0, and

q� eqkn

� �
ðXnÞ

�� ��
B
!a:s: 0; n ! 1;

where !a:s: means the almost surely convergence.

The proof follows as in Ruiz-Medina and Álvarez-Lié-

bana (2019b, Theorem 1), considering the special case of

the separable Banach space B ¼ Bbþ1.

3 Simulation study

The goal of the simulation study undertaken is to illustrate

the flexibility, and the large-sample-size properties of the

ARBX(1) parameter estimator, and associated functional

plug-in predictor. The effect of the discretization step size

is investigated as well. Note that, under the conditions

assumed, the function space scenario selected (fractional

Besov and, in particular, Sobolev spaces) is quite flexible

(see ‘‘Appendix’’ below).

The following ARBX(1) process has been generated:

Xn ¼ q Xn�1

� �
þ en; n 2 Z;

considering, without loss of generality, b ¼ 3 (i.e., three

exogenous variables) in the general formulation (33) pro-

vided in the ‘‘Appendix’’. Hence,

Xn ¼

Xn

Znþ1;1

Znþ1;2

Znþ1;3

8
>>><

>>>:

9
>>>=

>>>;

; en ¼

en
gn;1
gn;2
gn;3

8
>>><

>>>:

9
>>>=

>>>;

;

q ¼

q a1 a2 a3

0B u1 0B 0B

0B 0B u2 0B

0B 0B 0B u3

8
>>><

>>>:

9
>>>=

>>>;

:

where Xn, and Zn;i; gn;i; i ¼ 1; 2; 3, are also valued in

B0
1;1 ½0; 1�ð Þ, for each n 2 Z (see again the ‘‘Appendix’’

section for more details). Figure 1 displays the values of

XH

n in eH
H ¼ Bb

2;2ð½0; 1�Þ, obtained by smoothing, with cu-

bicspline option of fit.m MatLab function, the functional

values of Xn at times n ¼ 5000; 25;000; 50;000; 100;000.

The smoother functional values of the exogenous ran-

dom variables are extended to the space H ¼ L2ð½0; 1�Þ, by

projection into the elements of the basis

/j xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi

2

b� a

r

sin
pjx
b� a

� �
;

j� 1; x 2 a; b½ �; a ¼ 0; b ¼ 1:

ð11Þ

To ensure the first part of Assumption A1 holds, a trun-

cated multivariate infinite-dimensional Gaussian measure

in H ¼ H4 is generated:
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X0 ¼

X0

Z1;1

Z1;2

Z1;3

8
>>><

>>>:

9
>>>=

>>>;

	N T 0;C
� �

;

e0 ¼

e0

g0;1

g0;2

g0;3

8
>>><

>>>:

9
>>>=

>>>;

	N T 0;Cg

� �
;

ð12Þ

where

C ¼

CX0;X0
CX0;Z1;1

CX0;Z1;2
CX0;Z1;3

CZ1;1;X0
CZ1;1;Z1;1

CZ1;1;Z1;2
CZ1;1;Z1;3

CZ1;2;X0
CZ1;2;Z1;1

CZ1;2;Z1;2
CZ1;2;Z1;3

CZ1;3;X0
CZ1;3;Z1;1

CZ1;3;Z1;2
CZ1;3;Z1;3

8
>>><

>>>:

9
>>>=

>>>;

; ð13Þ

and

Cg ¼

Ce0;e0
Ce0;g0;1

Ce0;g0;2
Ce0;g0;3

Cg0;1;e0
Cg0;1;g0;1

Cg0;1;g0;2
Cg0;1;g0;3

Cg0;2;e0
Cg0;2;g0;1

Cg0;2;g0;2
Cg0;2;g0;3

Cg0;3;e0
Cg0;3;g0;1

Cg0;3;g0;2
Cg0;3;g0;3

8
>>><

>>>:

9
>>>=

>>>;

: ð14Þ

In Eq. (13), we have denoted

CX0;X0
¼ I � Dð Þ�c; c[ 2b[ 1; ðb[ 1=2Þ; ð15Þ

with I � Dð Þ�c
being the Bessel potential of order 2c, and

CZ1;l;Z1;i
¼ E½Z1;l � Z1;i�; CZ1;i;X0

¼ E½Z1;i � X0�;
CX0;Z1;i

¼ E½X0 � Z1;i�;

for i; l ¼ 1; 2; 3. Also, in Eq. (14),

Ce0;e0
¼ E e0 � e0½ �; Cg0;i;g0;l

¼ E g0;i � g0;l

	 

;

i; l ¼ 1; 2; 3

Cg0;i;e0
¼ E g0;i � e0

	 

; Ce0;g0;i

¼ E e0 � g0;i

	 

;

i ¼ 1; 2; 3:

ð16Þ

The functional entries of (13) are now explicitly defined,

ensuring, in particular, the one-dimensionality of their

eigenspaces, in order to get the second part of Assumption

A1 to hold. Furthermore, for every f 2 H ¼ L2ð½0; 1�Þ, and

for i; l ¼ 1; 2; 3,

CX0;X0
fð Þ ¼

X1

j¼1

ð1 þ jÞ�c1h/j; f iH/j;

CX0;Z1;i
fð Þ ¼

X1

j¼1

ð1 þ jÞ�
c1þciþ1

2 h/j; f iH/j;

CZ1;i;X0
fð Þ ¼

X1

j¼1

ð1 þ jÞ�
c1þciþ1

2 h/j; f iH/j;

CZ1;l;Z1;i
fð Þ ¼

X1

j¼1

ð1 þ jÞ�
clþ1þciþ1

2 h/j; f iH/j:

ð17Þ

In the selection of the model parameters, in the ARBX(1)

process generation, according to Assumptions A4–A5,

b[ 1=2, and ci [ 2b; i ¼ 1; 2; 3; 4 (see also the ‘‘Ap-

pendix’’). In particular, we have considered b ¼ 3=5. In

those generations, to illustrate the flexibility of the mod-

eling approach presented, the most local singular behaviour

corresponds to the functional values of the endogenous

variable (see also the air pollutants ARBX(1)-based data

analysis implemented in the next section). Specifically, the

ci, i ¼ 1; 2; 3; 4, parameter values, characterizing the local

regularity of the functions in the RKHSs of the endogenous

and exogenous variables, have been assigned according to

the following scheme:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-40

-30

-20

-10

0

10

20

30
n

t
 = 5000

n
t
 = 25000

n
t
 = 50000

n
t
 = 100000

Fig. 1 Functional values of XH

n at n ¼ 5000; 25;000; 50;000; 100;000, with discretization step size Dh ¼ 0:0159
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c ¼ ci ¼ 2bþ f ðiÞ; i ¼ 1; . . .; bþ 1f g;
f ðiÞ[ 0; i ¼ 1; . . .; bþ 1:

ð18Þ

Particularly, the results displayed in Tables 1 and 2 cor-

respond to the following two parametric families:

c1 ¼ ci ¼ 2bþ i

10
; i ¼ 1; 2; 3; 4

� �
;

c2 ¼ ci ¼ 2bþ log10 iþ 1ð Þ; i ¼ 1; 2; 3; 4f g:
ð19Þ

Thus, as in Sect. 4, a more regular local behaviour is

assumed for the functional values of the exogenous vari-

ables. Note also that c2-family in (19) corresponds to a

smoother version of the involved variables. Under the

above-referred parametric scenarios, the functional entries

CX0;X0
and CZ0;3;Z0;3

are represented in Fig. 2.

The ARBX(1) model generated lives in the function

space scenario described in the ‘‘Appendix’’. Particularly,

see Eq. (33) below.

For simplifications purposes, we have considered, in the

generations, Cg0;i;g0;l
¼ Ce0;g0;i

¼ 0H ; i; l ¼ 1; 2; 3; i 6¼ l. The

following identities characterise the diagonal functional

entries of Cg, in terms of the elements of the basis

f/j; j� 1g introduced in Eq. (11): For i ¼ 1; 2; 3, and

j; h� 1,

hCe0;e0
ð/jÞ;/hiH ¼

CX0X0
ð/jÞð/jÞð1 � ½qð/jÞð/jÞ�2Þ j ¼ h;

e� j�hj j2=W2

j 6¼ h

(

;

hCg0;i;g0;i
ð/jÞ;/hiH ¼

CZ0;i;Z0;i
ð/jÞð/jÞ 1 � ½uið/jÞð/jÞ�2

� �
j ¼ h

e� j�hj j3=W2

j 6¼ h

8
<

:
;

where for i ¼ 1; 2; 3, and j; h� 1, considering W ¼ 0:4,

qð/jÞð/hÞ ¼ hqð/jÞ;/hiH ¼ ð1 þ jÞ�1:5
j ¼ h;

e� j�hj j=W j 6¼ h

(

;

uið/jÞð/hÞ ¼ huið/jÞ;/hiH ¼ ð1 þ jÞ�ð3þ0:5iÞ
j ¼ h;

e� j�hj j2=W j 6¼ h:

(

ð20Þ

Furthermore, for i ¼ 1; 2; 3, and j; h� 1,

haið/jÞ;/hiH ¼ ð1 þ jÞ�ð4þ0:5iÞ
j ¼ h;

e� j�hj j3=W j 6¼ h

(

: ð21Þ

In the computation of the B norm, and the involved Besov

and Sobolev norms, in terms of wavelets (see ‘‘Appendix’’,

in particular, Eqs. (32)–(35)), the coarser space and highest

resolution level have been fixed at J ¼ 2 and K ¼ 6,

respectively. Specifically, in the model generated, we have

considered r ¼ 1, and then, 2J � 2 dreþ1ð Þ is required,

according to Angelini et al. (2003). Thus, J ¼ 2 is fixed, to

define the coarser space in the multiresolution analysis

performed by wavelets (see also ‘‘Appendix’’). As deeply

discussed in pp. 152–156 in Antoniadis and Sapatinas

(2003), the choice of the optimal K can just be reduced to

being such that K\ log2ð
ffiffiffi
L

p
Þ, where 2L denotes the

number of grid points considered in the evaluation of the

elements of the wavelet basis selected. Our choice has been

Daubechies wavelets of order N ¼ 10 (see Fig. 3). Then,

L ¼ 13 and K ¼ 6 respectively define the number of grid

points, and the highest resolution level studied in the next

section (see also Daubechies 1992). Note that, in our case,

K has been selected by a cross-validation procedure,

applied within the range of allowed values above-referred.

3.1 Assumptions made and numerical results

As given in Sect. 2, the componentwise estimator (8) of q
is strongly consistent in LðBÞ, under the formulated

Assumptions A1–A5, and the conditions in Ruiz-Medina

and Álvarez-Liébana (2019b, Lemmas 8–9). See also

Theorem 1. As commented before, the model generated in

Sect. 3 ensures Assumptions A1 and A4–A5 hold.

Regarding Assumption A2, in the following, for a given

functional sample size n, we consider kn ¼ ½lnðnÞ��, where

½��� denotes the integer part function. This truncation

parameter ensures that, for all the sample sizes studied

n ¼ 1500; 2500; 5000; 15;000; 25;000; 50;000; 75;000;

100;000; 130;000;

the empirical eigenvalue Cn;kn is positive (i.e., Assumption

A2 is satisfied). Figure 4 below shows that Assumption A3

also holds, under the ARBX(1) process scenario generated

in the previous section.

Table 1 Percentage of simulations from the 200 generations obtained

for each sample size, where the error B-norm is larger than the upper

bound (23)

nt c1 c2

n1 ¼ 1500 11.5% ( 23
200

) 12% ( 24
200

)

n2 ¼ 2500 9.5% ( 19
200

) 9% ( 18
200

)

n3 ¼ 5000 8% ( 16
200

) 8.5% ( 17
200

)

n4 ¼ 15;000 4.5% ( 9
200

) 4.5% ( 9
200

)

n5 ¼ 25;000 3.5% ( 7
200

) 2.5% ( 5
200

)

n6 ¼ 50;000 2.5% ( 5
200

) 1.5% ( 3
200

)

n7 ¼ 75;000 2% ( 4
200

) 1% ( 2
200

)

n8 ¼ 100;000 1% ( 2
200

) 0.5% ( 1
200

)

n9 ¼ 130;000 0% ( 0
200

) 0% ( 0
200

)

The sample sizes n ¼ 1500; 2500; 5000; 15;000; 25;000; 50;000;
75;000; 100;000; 130;000 have been tested, under the truncation rule

kn ¼ lnðnÞ½ ��. As indicated, the results displayed correspond to the

two parametric families c1 and c2 in Eqs. (18)–(19), characterizing the

RKHSs of the endogenous and exogenous functional variables
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In addition, according to Theorem 1 [see also Ruiz-

Medina and Álvarez-Liébana (2019b, Theorem 1)], the

strong-consistency of the componentwise estimator (8) in

LðBÞ follows when

knC
�1
kn

Xkn

j¼1

aj ¼ o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= lnðnÞ

p� �
; n ! 1; ð22Þ

where as before,

a1 ¼ 2
ffiffiffi
2

p

C1 � C2

; aj ¼ 2
ffiffiffi
2

p
max

1

Cj�1 � Cj

;
1

Cj � Cjþ1

� �
; j� 2;

and fCjgj� 1 denotes the system of eigenvalues of the

extended matrix autocovariance operator C in (13). We can

observe in Fig. 5 that condition (22) is satisfied.

Recall that, to ensure strong consistency in B�norm, the

upper bound in Theorem 1 [see also Ruiz-Medina and

Álvarez-Liébana (2019b, Theorem 1 and Corollary 1)], for

the functional prediction error qðXnÞ � bXn

���
���
B

is given by

Mnn ¼ M exp
�n

C�2
kn
k2
n

Pkn
j¼1 aj

� �2

0

B@

1

CA; ð23Þ

where M ¼ supx2XnX0
kX0ðxÞkB, PðX0Þ ¼ 0, and for each

functional sample size n, as before, Ckn is the kn-th

eigenvalue of the extended autocovariance operator C in

(13), with kn ¼ lnðnÞ½ ��. Table 1 reflects the percentage of

values of the computed B-norm of the functional error

greater than the upper bound (23).

Table 2 Percentage of

simulations from the 200

generations of each sample size,

where the error B-norm is larger

than the upper bound (23)

n

c1 c2

5000 15,000 30,000 5000 15,000 30,000

Dh1 12% ( 24
200

) 10% ( 20
200

) 7.5% ( 15
200

) 13.5% ( 27
200

) 10.5% ( 21
200

) 6.5% ( 13
200

)

Dh2 9% ( 18
200

) 5.5% ( 11
200

) 4% ( 8
200

) 9.5% ( 19
200

) 6% ( 12
200

) 4% ( 8
200

)

Dh3 7% ( 14
200

) 4% ( 8
200

) 3.5% ( 7
200

) 7.5% ( 15
200

) 4% ( 8
200

) 3% ( 6
200

)

Dh4 5.5% ( 11
200

) 3.5% ( 7
200

) 2% ( 4
200

) 4.5% ( 9
200

) 2.5% ( 5
200

) 2% ( 4
200

)

Dh5 2.5% ( 5
200

) 1.5% ( 3
200

) 1% ( 2
200

) 1.5% ( 3
200

) 1% ( 2
200

) 1% ( 2
200

)

Dh6 1.5% ( 3
200

) 0.5% ( 1
200

) 0.5% ( 1
200

) 1% ( 2
200

) 0.5% ( 1
200

) 0% ( 0
200

)

Dh7 1% ( 2
200

) 0.5% ( 1
200

) 0% ( 0
200

) 0.5% ( 1
200

) 0% ( 0
200

) 0% ( 0
200

)

The sample sizes n ¼ 5000; 15;000; 30;000, and the truncation rule kn ¼ lnðnÞ½ �� have been studied. As

indicated, the results displayed correspond to the two parametric families c1 and c2 in Eqs. (18)–(19),

characterizing the involved RKHSs. The discretization steps Dhj ¼ 3�ð2þjÞ; j ¼ 1; . . .; 7
� �

are considered
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Fig. 2 Covariance kernels defining operators CX0 ;X0
(left-hand-side) and CZ1;3 ;Z1;3

(right-hand-side), respectively given in terms of c1 ¼ 2bþ 1=10

and c4 ¼ 2bþ 4=10, with b ¼ 3=5, and discretization step size Dh ¼ 0:0159
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1

Fig. 3 Father (blue) and mother (red) Daubechies wavelets of order

N ¼ 10
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As commented, the numerical results in Table 1 focus

on the illustration of the strong consistency of the derived

ARBX(1) plug-in predictor. While the effect of the dis-

cretization step size is analyzed in Table 2. Particularly, the

following discretization step scheme has been considered:

Dhj ¼
1

32þj
; j ¼ 1; . . .; 7

� �
;

and the particular values

Dh1 ¼ 3:70ð10�2Þ; Dh2 ¼ 1:23ð10�2Þ;
Dh3 ¼ 4:12ð10�3Þ; Dh4 ¼ 1:37ð10�3Þ;
Dh5 ¼ 4:57ð10�4Þ; Dh6 ¼ 1:52ð10�4Þ;
Dh7 ¼ 5:08ð10�5Þ;

have been studied (see Fig. 6 below), corresponding to

32þj þ 1; j ¼ 1; . . .; 7
� �

grid points.

In Table 2, the sample sizes n ¼ 5000; 15;000; 30;000

are studied. This table displays the percentage of simula-

tions where the error B-norm is larger than the upper bound

in (23), for each discretization step size, functional sample

size and parametric families c1 and c2.

4 Real-data application: short-term
forecasting of air pollutants

In this section, the performance of the ARBX(1) based

prediction approach presented is illustrated in a real-data

example. Specifically, the short-term forecasting of daily

average concentrations of atmospheric aerosol particles

with diameters less than 10 lm, also known as PM10

(coarse particles), is achieved from a functional perspec-

tive. The importance of the accurate forecasting of this

kind of particles relies on being inhalable atmospheric

pollution particles, which impact the public health. Fol-

lowing the suggestions by the World Health Organization,

the European Union developed in 2008 (in particular,

directive 2008/50/EU) a complete legislative package,

establishing health based standards for the levels of PM10:

daily mean concentration of PM10 should not be greater

than 50 lg m-3 more than 35 days per year, neither the

annual average of concentration of PM10 shall not be

greater than 40 lg m-3. However, this limit has been

exceed during the last years in heavily industrialized areas,

deriving in severe people’s health problems. Therefore,

PM10 forecasting is crucial to adopting efficient public

transport policies. The dataset is analyzed in Sect. 4.1,

while Sect. 4.2 describes the previous processing procedure

required, for the implementation of our functional predic-

tion methodology in Sect. 4.3.

4.1 Description of our dataset

The dataset considered is comprised of daily average

concentrations of PM10, coming from hourly measure-

ments, from January 1, 2007 to March 31, 2011, collected

by the air quality Normand (French) authority, known as

Air Normand (see http://www.atmonormandie.fr). Specifi-

cally, we have been able to access the records, collected at

6 of the 13 pollution monitoring stations, in the fixed

network located throughout Haute-Normandie region,

which is one of the most heavily industrialized areas in

France (see locations in the maps displayed in Fig. 7).
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0
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0.35

Fig. 4 Values of

q �ð Þ �
XK

l¼1
hq �ð Þ;/li B�b

2;2
ð½0;1�Þ½ �bþ1/l

����

����
L ½B1;1ð½0;1�Þ�bþ1ð Þ

, for K-values reflected in the horizontal axis
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Fig. 5 Values of
knC

�1
kn

Pkn

j¼1
ajffiffiffiffiffiffiffiffiffiffiffi

n= lnðnÞ
p , considering kn ¼ lnðnÞ½ ��, as reflected

in the horizontal axis
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Fig. 6 Zero-convergence-rate of Dhj ¼ 1
32þj ; j ¼ 1; . . .; 12
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In the following, these monitoring stations will be

denoted as Sc; c ¼ 1; . . .; 6f g, which have been chosen

aimed at reflecting a wide variety of scenarios, such that

roadsides, urban, industrial and rural regions. As reflected

in Fig. 8, the monitoring station S6 (located in a rural area)

has collected the smallest PM10 concentrations, while sta-

tions S2 and S5 (located at roadsides) collected the highest

pollution levels. These stations also display the highest

variability, which seems logical, since pollution levels in

roadside are strongly dependent on the road traffic.

The ARBX(1) modelling is adopted since pollution

particles are mainly procured from natural sources (i.e.,

influenced by meteorological variables), or due to human

activity. In our study we incorporate the exogenous infor-

mation coming from meteorological variables. Specifically,

we consider the following four exogenous variables (b ¼ 4

in our ARBX(1) model): Daily average temperature (
C),

daily average atmospheric pressure (hPa), daily average

wind speed (ms�1), and daily maximum gradient of tem-

perature (
C), computed all of them from hourly mea-

surements. Note that daily maximum gradient of

temperature denotes the daily maximum of the hourly

differences between the temperature at 2 and 100 m.

Measurements of these meteorological variables were

collected at three meteorological stations belonging to the

French national meteorological service, such that each air

pollution station is associated with the closest meteoro-

logical station. Thus, pollution stations S1; S2 and S3 are

associated to a common meteorological station. Also, a

second meteorological station covers the pollution stations

S4 and S5. Finally, a third meteorological station is asso-

ciated with the pollution station S6. From the records col-

lected at the three meteorological stations, covering

pollution stations by spatial proximity, the sample beha-

viour of the four exogenous variables affecting PM10

concentrations at the six pollution stations, is displayed in

the boxplots in Fig. 9.

4.2 Data preprocessing

To obtain our functional dataset the following steps are

implemented:

Step 1: Missing-data imputation In the caption of Fig. 8,

the percentage of missing data is provided. Note that the R

package used (see, e.g., Moritz and Bartz-Beielstein 2017)

performs the imputation, based on an average of the pre-

vious and posterior non missing values. Since pollution

data is strongly linked with routines and consumption

patterns in business days, the past and the next five values

are considered. At each station, Sc; c ¼ 1; . . .; 6, 1551

records are then available corresponding to daily mea-

surements from January 1, 2007 to March 31, 2011. Daily

observations of the endogenous variable at pollution station

S1 are displayed after imputation in Fig. 10 below.

Step 2: Balanced data (31-days per month). A common

support is required for all the observed curves, evaluated in

the same function space. Cubicspline option in fit.m

MatLab function is applied, to obtaining 31 measurements

per month. Thus, the final grid contains 31 � 51 ¼ 1581

points.

Fig. 7 At the left-hand-side: map (extracted from Google Maps) displaying the location of the six pollution monitoring stations analyzed. At the

right-hand-side: enlarged map displaying the stations near Rouen
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Step 3: Splitting our dataset At each pollution station

Sc; c ¼ 1; . . .; 6, we will construct our plug-in predictor

bXc

51 ¼ eqkn
ðXc

50Þ, from a functional sample fX1; . . .;X50g of

size 50. Thus, functional prediction is achieved for the last

month, March, 2011, at each pollution station.

Step 4: Detrending and deseasonalizing A polynomial

a0 þ a1t þ a2t
2 þ a3t

3 þ � � � is fitted for detrending all the

curve data, including the last month. Thus, we have

checked the trends fitting polynomials of increasing degree,

stopping when the fitting trends between two successive

degrees display a similar behaviour. As shown in Fig. 11

below, a quadratic polynomial trend a0 þ a1t þ a2t
2 has

finally been fitted. After detrending, annual seasonality is

also removed

Step 5: Modelling by an ARBX(1) process Summarizing,

from the previous steps, our functional sample is consti-

tuted by 50 detrended, and annually deseasonalized

observed curves for the endogenous and exogenous vari-

ables (on a grid of 1581 points). Plug-in functional pre-

diction is achieved for the 51-th month, from the observed

curves at the previous 50 months by fitting ARBX(1)

Fig. 8 Boxplots on the observed

sample behaviour of PM10

concentrations (lg m-3). Purple

dotted lines reflect the average

concentrations, while red solid

lines splitting the box reflect the

medians. Percentage of missing

observations: S1 Rouen (Urban)

1%; S2 Rouen (Roadside) 0.4%;

S3 Rouen (Industrial) 1.4%; S4

Le Havre (Urban) 3 %; S5 Le

Havre (Roadside) 1.2 %; S6

Dieppe (Rural) 1.7 %
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Fig. 9 Boxplots displaying the sample behaviour of exogenous

variables at each meteorological station (mean temperature on the top

left, mean wind speed on the top right, mean air pressure at the

bottom left, and maximum temperature gradient at the bottom right),

as reflected in this figure, respectively associated with the pollution

stations S1; S2; S3ð Þ, S4; S5ð Þ and S6ð Þ
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model in Eqs. (24)–(25) below. Figure 12 displays our

PM10 functional dataset (after interpolation and smoothing)

at station S1, corresponding to the period January 2007–

February 2011.

Specifically, the following ARBX(1) model is fitted:

X
c

n ¼ qc X
c

n�1

� �
þ ecn; n ¼ 1; . . .; T ¼ 50;

c ¼ 1; . . .; 6;
ð24Þ

where b ¼ 4, and hence,

X
c

n ¼

Xc
n

Zc
nþ1;1

Zc
nþ1;2

Zc
nþ1;3

Zc
nþ1;4

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

; ecn ¼

ecn
gcn;1
gcn;2
gcn;3
gcn;4

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

;

qc ¼

qc ac1 ac2 ac3 ac4

0B uc1 0B 0B 0B

0B 0B uc2 0B 0B

0B 0B 0B uc3 0B

0B 0B 0B 0B uc4

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

;

c ¼ 1; . . .; 6:

ð25Þ

Equivalently, for c ¼ 1; . . .; 6,

Xc
n ¼ qc Xc

n�1

� �
þ
X4

i¼1

aci Zc
n;i

� �
þ ecn; n ¼ 1; . . .; T ¼ 50;

ð26Þ

with, for i ¼ 1; . . .; 4; aci 2 LðBÞ; qc 2 LðBÞ, and

Zc
n;i ¼ uci Zc

n�1;i

� �
þ gcn;i; uci 2 LðBÞ; n ¼ 1; . . .;T ¼ 50:

ð27Þ

It can be observed in Fig. 12 that PM10 curves are con-

tinuous. Hence, b[ 1=2. In particular, we look for the

minimal local regularity order, in our fitting of the previous

introduced ARBX(1) model, with b ¼ 4. Thus, the

parameter value b ¼ 3=5 is considered, and c ¼ ci ¼
2bþ �, with � ¼ 0:01, for i ¼ 1; 2; 3; 4, being fitted, to

define the corresponding RKHSs structures.

B ¼ B0
1;1 ½0; 1�ð Þ

h i5

;

eH ¼ B�b
2;2 ½0; 1�ð Þ

h i5

; H ¼ ½L2ð½0; 1�Þ�5; HðXÞ ¼ ½Bc
2;2 ½0; 1�ð Þ�5:

ð28Þ

4.3 The performance of the ARBX(1) plug-in
predictor

In the implementation of the leave-one-out cross validation

procedure, at each pollution station Sc; c ¼ 1; . . .; 6, the

following functional sample is considered:

Y
h;c ¼ Y

h;c
i ; i ¼ 1; . . .; 48

n o
¼ X

c

i ; i ¼ 1; . . .; 49
� �

n X
c

h

� �
;

by leaving aside the functional data X
c

h, h ¼ 1; . . .; 49, as

well as the functional data X
c

50; c ¼ 1; . . .; 6, in the com-

putation of the componentwise estimator (8) of the auto-

correlation operator q. Thus, at each iteration

h 2 f1; . . .; 49g of the implemented leave-one-out cross

validation procedure, the ARBX(1) plug-in predictor
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Fig. 10 Daily observations (from 01/01/2007 to 31/03/2011, 1551

grid points) of PM10 at station S1 after imputation
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Fig. 11 Fitting trends as polynomial of degrees 0 (null trend; blue

line), 1 (linear trend; red line), 2 (quadratic trend; yellow line) and 3

(cubic trend; purple line)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Fig. 12 Observed PM10 curves at station S1 for the period January

2007–February 2011
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½bXc

51�h;kn of X
c

51 is computed, from a functional sample of

size 49, considering the truncation order kn, as follows

½bXc

51�h;kn ¼
Xkn

j;l¼1

1

eC
c;h

n;j

hXc;h
50 ;
e/
c;h

n;j ie
H

� 1

47

X47

i¼1

hYc;h
iþ1;

e/
c;h

n;j ie
H
hYc;h

i ; e/
c;h

n;l ie
H

e/
c;h

n;l

 !

;

ð29Þ

for c ¼ 1; . . .; 6. Here, the empirical eigenvalues

eC
c;h

n;j ; j ¼ 1; . . .; 48; h ¼ 1; . . .; 49; c ¼ 1; . . .; 6
n o

are calculated by the formula

eC
c;h

n;j ¼
1

48

X48

i¼1

hYc;h
i ; e/

c;h

n;j i
2

e
H
¼ 1

48

X49

i 6¼ h

i ¼ 1

hXc

i ;
e/
c;h

n;j i
2

e
H
:

In the above equations, for each c ¼ 1; . . .; 6, and h ¼
1; . . .; 49; e/

c;h

n;j ; j� 1
n o

denotes the system of eigenvectors

of the extended empirical autocovariance operator, based

on a functional sample of size 48. The truncation parameter

values kn;1 ¼ log2

ffiffiffi
n

p
ð Þ½ �� and kn;2 ¼ ln n5=2

� �	 
�
are tes-

ted, in the computation of (29). Similarly to the simulation

study undertaken, all the required conditions for the strong-

consistency are checked. In particular, Assumptions A4–

A5 directly follow from the function space scenario (28)

adopted. Figure 13 displays the convergence to zero

required in Assumption A3 at pollution stations S1 and S6.

Table 3 below and Fig. 14 display the mean leave-one

out cross validation functional errors

Ekn;m
c ¼ 1

49

X49

h¼1

X
c

51 � bXc

51

h i

h;kn;m

����

����
B

; c ¼ 1; . . .; 6; m ¼ 1; 2;

ð30Þ

at the six pollution stations studied, for the two truncation

orders analyzed. In the calculation of (30), the Besov and

Sobolev norms involved in our function space scenario (28)

are computed by projection into Daubechies wavelets of

order N ¼ 10 (see Daubechies 1992), with six resolution

levels (see also Fig. 3).

In Table 3, the worst performance is observed at pol-

lution stations S2 and S5, corresponding to roadside sta-

tions. As commented before, the traffic flow is one of the

main factors inducing the higher-variability displayed by

PM10 concentrations in these stations. A slightly better

performance can be observed with truncation order kn;1,

but, indeed, a significant improvement cannot be con-

cluded. When larger values of parameter b, and hence, of

parameter c, defining our function space scenario, are

considered, a stronger smoothing of our original data set is

achieved, in terms of Sobolev and Besov norms. Thus, a

better performance is obtained, with a loss of accuracy, in

the approximation of the local behaviour of PM10

concentrations.

5 Final comments

It is well-known that FDA techniques provide a flexible

framework for the local analysis of high-dimensional data

which are continuous in nature. One of the main subjects in

FDA is the suitable choice of the function space, where the

observed data take their values. In particular, the norm of

the selected space should provide an accurate measure of

the local variability of the observed endogenous and

exogenous variables, that could be crucial in the posterior

representation of the possible interactions with the phe-

nomena of interest and its evolution. That is the case of the

real-data example analyzed in Sect. 4

This paper adopts an abstract Banach space framework,

assuming an autoregressive dynamics in time, for all the
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Fig. 13 Evaluation at stations S1 (left-hand-side) and S6 (right-hand-side) of the empirical norm Lk ¼ supx2B; kxk
B
� 1

q xð Þ �
Pk

j¼1hq xð Þ;/n;jie
H
/n;j

����

����
B

, for values k ¼ 10; 15; 20; 25; 30; 35; 45; 60, displayed in the horizontal axis
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functional random variables involved in the model.

Specifically, an ARBX(1) model is considered. The

endogenous and exogenous information affecting the

functional response at a given time is incorporated through

a suitable linear model, involving a matrix autocorrelation

operator. This operator model reflects possible interactions

between all endogenous and exogenous functional random

variables at any time.

Particularly, the scale of fractional Besov spaces pro-

vides a suitable functional framework, where the presented

approach can be implemented, modelling local regularity/

singularity in an accurate way. Note that the norms in these

spaces can be characterized in terms of the wavelet trans-

form. Specifically, wavelet bases provide countable dense

systems in Besov spaces, that can be used in the definition

of the inner product and associated norms in weighted

fractional Sobolev spaces, constructed from the space of

square integrable functions on an interval (see Triebel

1983; Ruiz-Medina and Álvarez-Liébana 2019b). Thus,

suitable embeddings can be established for applying the

construction in Lemma 2.1 in Kuelbs (1970). As special

cases of well-known Banach spaces within our framework,

we refer to Cð½0; 1�Þ the space of continuous functions on

[0, 1], with the supremum norm, and Dð½0; 1�Þ the Sko-

rokhod space of right-continuous functions on the interval

[0, 1], having a left limit at all t 2 ½0; 1�. Note that these

spaces have been widely used in the FDA literature in a

Banach-valued time series context (see Bosq 2000).

The simulation study and real-data application illustrate

the fact that our approach is sufficiently flexible to

describing the local behaviour of both, regular and singular

functional data. Note that, in the singular case, we can

choose a suitable norm that measures the local fluctuations

in a precise way. This information is relevant, for example,

in the analysis of PM10 concentrations, as was illustrated in

Sect. 4.

Table 3 Mean leave-one out cross validation functional errors (30) at

pollution stations Sc; c ¼ 1; . . .; 6f g

kn;1 kn;2

Station Sc E
kn;1
c

Station Sc E
kn;2
c

S1 0.00150 S1 0.00193

S2 0.00772 S2 0.00940

S3 0.00186 S3 0.00202

S4 0.00167 S4 0.00182

S5 0.00990 S5 0.01020

S6 0.00091 S6 0.00127

The truncation parameters kn;1 ¼ log2

ffiffiffi
n

p
ð Þ½ �� and kn;2 ¼ ln n5=2

� �	 
�

have been tested

Fig. 14 Map displaying mean

leave-one out cross validation

functional errors (30) at

pollution stations

fSc; c ¼ 1; . . .; 6g. The

truncation parameters kn;1 ¼
log2

ffiffiffi
n

p
ð Þ½ �� (left-hand-side)

and kn;2 ¼ ln n5=2
� �	 
�

(right-

hand-side) have been tested
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An individual statistical analysis has been performed in

Sect. 4 at each pollution station. The incorporation of

spatial interactions in the analysis could be addressed in a

multivariate infinite-dimensional spatial framework, and

constitutes the subject of a subsequent paper. Specifically,

most of the authors consider, for example, a joint analysis

of wind speed and wind direction as exogenous variables.

In that case, a spatial functional correlation analysis should

be considered. There are several available methods in the

current spatial functional statistical literature (see Delicado

et al. 2010) to address this issue. Particularly, we refer to

the frameworks of multivariate functional random field

based prediction (see, e.g., Bohorquez et al. 2017); and,

spatial functional kriging-based techniques (see, e.g.,

Bohorquez et al. 2017; Delicado et al. 2010; Giraldo et al.

2010; Ignaccolo et al. 2014; Nerini et al. 2010, among

others).

The state space based approach is relatively new in the

spatial functional framework (see, e.g., Ruiz-Medina 2011,

where spatial autoregressive series in Hilbert spaces are

introduced). The invertibility of the linear state space

equation leads to important technical improvements, in the

derivation of the asymptotic properties of componentwise

functional parameter estimators, and associated plug-in

predictors. Particularly, to ensure strong-consistency, the

truncation rule depends on the sample size, the separation,

and the rate of convergence to zero of the eigenvalues of

the autocovariance operator.
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Appendix

It is well-known that Besov spaces, Br
p;q; �k krp;q

� �
;

n

r 2 R; 1� p; q�1g, and their norms can be characterized

in terms of the wavelet transform (see, e.g., Triebel 1983).

Specifically, for every f 2 Br
p;q,

fk krp;q� uJ 
 fk kpþ
X1

j¼J

2jr wj 
 f
�� ��

p

� �q
" #1=q

\1; ð31Þ

where u and w denote the father and mother wavelets,

whose translations and dilations provide a multiresolution

analysis of a suitable space of square-integrable functions.

Particularly, consider the space L2ð½0; 1�Þ, and its

orthogonal decomposition from an dre þ 1ð Þ-regular Mul-

tiresolution Analysis, induced by an orthogonal basis of

wavelets, for certain r[ 0. Then, father and mother

wavelets belong to C dreþ1ð Þð½0; 1�Þ. For every f 2 L2ð½0; 1�Þ,

f ðtÞ ¼
X2J�1

k¼0

afJ;kuJ;kðtÞ þ
XK

j¼J

X2j�1

k¼0

bfj;kwj;kðtÞ; t 2 ½0; 1�;

ð32Þ

where J is such that 2J � 2 dreþ1ð Þ, and for

k ¼ 0; . . .; 2j�1; j ¼ J; . . .;K,

afJ;k ¼
Z

R

f ðxÞuJ;kðxÞdx; bfj;k ¼
Z

R

f ðxÞwj;kðxÞdx

(see Daubechies 1992). Here, K is the truncation parameter

defining the last (or highest) resolution level considered in

the finite-dimensional wavelet approximation (32).

As commented before, the following function spaces

have been considered:

B ¼ B0
1;1ð½0; 1�Þ

h ibþ1

;

eH ¼ H
�b
2 ð½0; 1�Þ

h ibþ1

¼ B�b
2;2ð½0; 1�Þ

h ibþ1

H ¼ L2ð½0; 1�Þ
	 
bþ1

;

HðXÞ ¼
Ybþ1

i¼1

H
ci
2 ð½0; 1�Þ ¼

Ybþ1

i¼1

Bci
2;2ð½0; 1�Þ

B
H ¼ B0

1;1ð½0; 1�Þ
h ibþ1

;

eHH ¼ H
b
2 ð½0; 1�Þ

h ibþ1

¼ Bb
2;2ð½0; 1�Þ

h ibþ1

H
H ¼ L2ð½0; 1�Þ

	 
bþ1
;

½HðXÞ�H ¼
Ybþ1

i¼1

H
�ci
2 ð½0; 1�Þ ¼

Ybþ1

i¼1

B�ci
2;2 ð½0; 1�Þ;

ð33Þ

where the parameters fcigi¼1;...;bþ1 reflect the second-order

local regularity of the functional random components of

X ¼ fXn; n 2 Zg in Eq. (5). From embedding theorems

between Besov spaces, the following continuous inclusions

hold (see Triebel 1983):

HðXÞ,!eH

,!B



,!H,!B,!eH ,!½HðXÞ�H; ð34Þ

for ci [ 2b[ 1; i ¼ 1; . . .; bþ 1. Thus, Assumptions A4–

A5 are satisfied. The B and B
H

norms are then computed

from the following identities: For every

f ¼ f ; f1; . . .; fbð Þ; g ¼ g; g1; . . .; gbð Þ 2 B � eH ,
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f
�� ��

B
¼ sup

j� J

sup
k¼0;...;2 j�1

sup afJ;k

���
���; bfj;k

���
���; sup

i¼1;...;b
afiJ;k

���
���;

 

sup
i¼1;...;b

bfij;k

���
���

!

gk k
B

 ¼

X2J�1

k¼0

agJ;k

���
���þ
XK

j¼J

X2j�1

k¼0

bgj;k

���
���

" #

þ
X2J�1

k¼0

Xb

i¼1

agiJ;k

���
���þ
XK

j¼J

X2j�1

k¼0

Xb

i¼1

bgij;k

���
���

" #

;

ð35Þ

where for f 2 B, and g 2 BH,

fk kB ¼ sup afJ;k

���
���; k ¼ 0; . . .; 2J � 1; bfj;k

���
���;

n

k ¼ 0; . . .; 2 j � 1; j ¼ J; . . .;K
�
;

gk kB
 ¼
X2J�1

k¼0

agJ;k

���
���þ
XK

j¼J

X2 j�1

k¼0

bgj;k

���
���:
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Horváth L, Kokoszka P (2012) Inference for functional data with

applications. Springer, New York

Hsing T, Eubank R (2015) Theoretical foundations of functional data

analysis, with an introduction to linear operators. Wiley, New

York

Ignaccolo R, Mateu J, Giraldo R (2014) Kriging with external drift for

functional data for air quality monitoring. Stoch Environ Res

Risk Assess 28:1171–1186

Kuelbs J (1970) Gaussian measures on a Banach space. J Funct Anal

5:354–367

Labbas A, Mourid T (2002) Estimation et prévision d’un processus
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Ruiz-Medina MD, Álvarez-Liébana J (2019) A note on strong-

consistency of componentwise ARH(1) predictors. Stat Probab

Lett 145:224–248
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