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†Department of Statistics and Operation Research (mruiz@ugr.es, javialvaliebana@ugr.es)
Faculty of Sciences, University of Granada

Campus Fuente Nueva s/n
18071 Granada, Spain

Abstract

This paper presents a new result on strong-consistency, in the trace norm,
of a diagonal componentwise parameter estimator of the autocorrelation o-
perator of an autoregressive process of order one (ARH(1) process), allow-
ing strong-consistency of the associated plug-in predictor. These results are
derived, when the eigenvectors of the autocovariance operator are unknown,
and the autocorrelation operator does not admit a diagonal spectral repre-
sentation with respect to the eigenvectors of the autocovariance operator.
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1. Introduction.

It is well-known that functional prediction from the ARH(1) framework
(see Bosq [6] and Bosq and Blanke [7]) has become a very active research
area, driven by its interesting applications in the analysis of high-dimensional
data (see, for example, Álvarez-Liébana, Bosq and Ruiz-Medina [1]). Several
authors have studied the asymptotic properties of componentwise estima-
tors of the autocorrelation operator, and ARH(1) predictors, in the case of
known and unknown eigenvectors of the autocovariance operator. We refer to
[9, 10, 11, 12], where the efficiency, consistency and asymptotic normality of
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these estimators are addressed, in a parametric framework (see also Álvarez-
Liébana, Bosq and Ruiz-Medina [2], on weak consistency in the norm of
Hilbert-Schmidt operators). In this paper, we pay attention to the diagonal
componentwise consistent estimation of the autocorrelation operator of an
ARH(1) process, from projection into the empirical eigenvectors of the auto-
covariance operator, when their theoretical counterparts do not diagonalize
the autocorrelation operator. A suitable sample-size-dependent truncation
order, according to the spectral properties of the autocovariance operator
of an ARH(1) process (namely, decay velocity and distance between eigen-
values), is usually selected to obtain the desirable asymptotic properties of
componentwise parameter estimators, and their associated plug-in predictors,
under different setting of conditions. The usual assumption on the autocor-
relation operator is its boundedness or Hilbert-Schmidt property. Hence, the
error term is usually measured in both operator norms, the norm of the space
of bounded linear operators and the Hilbert-Schmidt norm. In the same way,
dimension reduction has been a crucial topic in the nonparametric and semi-
parametric frameworks. In these contexts, a kernel-based predictor is usual
adopted, as early formulated in [13]. Additional covariates were incorpo-
rated in the novel semiparametric kernel-based proposal by [4], in which an
extension, to the functional time series framework, of partial linear models,
was firstly developed. In both frameworks, regular autocorrelation operators
usually arise. Thus, the error term could be measured in the trace norm,
in terms of the diagonal values, with the subsequent dimension reduction.
This is the proposal of the note carried out here, which could help the usual
computational limitations arising in the implementation of kernel-based es-
timators (see also [5]). A fractal approach was proposed in [8] to solve the
curse of dimensionality, by imposing a concentration assumption about the
distribution of the stochastic process. For example, in the Gaussian case,
under the trace class assumption on the autocorrelation operator, we can go
beyond the concentration assumption on the autocorrelation kernel values,
characterizing the distributional properties of the underlying stochastic pro-
cess. A diagonal design of the kernel-based estimator can then be considered,
ensuring the desirable asymptotic properties.

This paper intends to focus the attention of the reader on the smoothing
and regularization techniques usually applied in the functional data context,
that allow to work on a trace-class autocorrelation operator context, and
hence, to measure the autocorrelation operator estimation error, in the trace
norm. Particularly, strong-consistency in the trace norm also implies the
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consistency in the norm of the space of Hilbert-Schmidt operators, as well
as in the norm of bounded linear operators. Results derived in this paper
are mainly motivated by this fact, allowing an important dimension reduc-
tion, in the componentwise estimation of the autocorrelation operator of an
ARH(1) process, and its plug-in prediction. It is important to highlight that
the distributional properties of a wide class of stochastic processes in time
and/or space can be characterized in terms of stochastic evolution equations,
involving trace and positive autocorrelation operators (see, for example, Anh,
Leonenko and Ruiz-Medina [3], in the spatiotemporal case).

2. Preliminaries.

Let H be a real separable Hilbert space, and let X = {Xn, n ∈ Z} be a
zero-mean ARH(1) process on the basic probability space (Ω,A, P ) satisfying
the following equation:

Xn = ρ (Xn−1) + εn, n ∈ Z, (1)

where ρ is the autocorrelation operator of process X , which belongs to the
space L(H) of bounded linear operators, such that ‖ρk‖L(H) < 1, for k ≥ k0,
and for some k0. Here, as usual, ‖ · ‖L(H) denotes the norm in the space
L(H). The Hilbert-valued innovation process ε = {εn, n ∈ Z} is assumed
to be a strong white noise, and to be uncorrelated with the random ini-
tial condition. That is, ε is a Hilbert-valued zero-mean stationary process,
with independent and identically distributed components in time, and with
σ2
ε = E [‖εn‖2H ] < ∞, for all n ∈ Z. We restrict our attention here to the case

where ρ is such that ‖ρ‖L(H) < 1.
Under the above-setting of conditions, involved in the introduction of

equation (1), X admits the following MAH(∞) representation (see Bosq [6]):

Xn =
∞∑

k=0

ρk (εn−k) , n ∈ Z, (2)

that provides the unique stationary solution to equation (1). The autoco-
variance operator CX of the ARH(1) process X is given by

CX = E[Xn ⊗Xn] = E[X0 ⊗X0], ∀n ∈ Z,

which is assumed to be a trace operator.
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Let us now consider the empirical autocovariance operator Cn of the
ARH(1) process X = {Xn, n ∈ Z}, computed as follows:

Cn =
1

n

n−1∑

i=0

Xi ⊗Xi, n ≥ 2, (3)

from a functional sample X0, X1, . . . , Xn−1, of size n, of the ARH(1) process
X. The empirical eigenvalues {Cn,j, j ≥ 1}, and eigenvectors {φn,j, j ≥ 1}
of Cn are given by (see [6], pp. 102–103):

Cnφn,j = Cn,jφn,j, j ≥ 1, Cn,1 ≥ · · · ≥ Cn,n ≥ 0 = Cn,n+1 = Cn,n+2 = . . .

(4)

In the remainder, we will denote

Xi,j,n = 〈Xi, φn,j〉H , i ∈ Z, j ≥ 1, n ≥ 2,

φ′
n,j = sgn 〈φn,j, φj〉H φj, j ≥ 1, n ≥ 2, (5)

where sgn〈φn,j, φj〉H = 1〈φn,j ,φj〉H≥0 − 1〈φn,j ,φj〉H<0. Thus,

Cn,j =
1

n

n−1∑

i=0

X2
i,j,n, j ≥ 1, n ≥ 2. (6)

Let us now consider the cross-covariance operator DX given by

DX = E[Xi ⊗Xi+1] = E[X0 ⊗X1], ∀i ∈ Z,

which is assumed to be a trace operator. The empirical cross-covariance
operator Dn is defined as follows:

Dn =
1

n− 1

n−2∑

i=0

Xi ⊗Xi+1, n ≥ 2. (7)

Given the empirical eigenvectors of Cn, {φn,j, j ≥ 1} , we compute

D∗
n,j,l = 〈Dn (φn,j) , φn,l〉H =

1

n− 1

n−2∑

i=0

Xi,j,nXi+1,l,n, j, l ≥ 1, n ≥ 2,

and, in particular, we will use the notation

Dn,j = D∗
n,j,j = 〈Dn (φn,j) , φn,j〉H =

1

n− 1

n−2∑

i=0

Xi,j,nXi+1,j,n, j ≥ 1, n ≥ 2,

(8)
where the empirical projections {Xi,j,n, j ≥ 1, i = 0, 1, . . . , n−1} have been
previously defined in equation (5).
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3. Auxiliary results

The auxiliary results presented in this section allow the derivation of
Theorem 2 in the next section.

Assumption A1. The random initial condition X0 of the ARH(1) process
defined in (1) satisfies

E
{
‖X0‖4H

}
< ∞.

Theorem 1. (see Theorem 4.1 on pp. 98–99, Corollary 4.1 on pp. 100–101
and Theorem 4.8 on pp. 116–117, in [6]). Under Assumption A1, for any
β > 1

2
, as n → ∞,

n1/4

(ln(n))β
‖Cn − CX‖S(H) →a.s. 0,

n1/4

(ln(n))β
‖Dn −DX‖S(H) →a.s. 0, (9)

and, if ‖X0‖H is bounded,

‖Cn − CX‖S(H) = O
((

ln(n)

n

)1/2
)

a.s.,

‖Dn −DX‖S(H) = O
((

ln(n)

n

)1/2
)

a.s., (10)

where ‖·‖S(H) denotes the norm of the Hilbert-Schmidt operators on H, and
a.s. means, as usual, almost surely.

In the following, we denote by {Cj, j ≥ 1} the sequence of eigenvalues of
the autocovariance operator CX , satisfying

CX(φj) = Cjφj, j ≥ 1, (11)

with {φj, j ≥ 1} being the associated system of eigenvectors.

Lemma 1. Under Assumption A1, for n sufficiently large,

n1/4

(ln(n))β
sup
j≥1

|Cn,j − Cj | ≤ n1/4

(ln(n))β
‖Cn − C‖S(H) →a.s. 0, (12)

where {Cj, j ≥ 1} have been introduced in equation (11).
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The proof of Lemma 1 is straightforward since, from Theorem 1 and n
sufficiently large, Cn is a Hilbert-Schmidt operator, and in particular, it is a
compact operator. Thus, applying Lemma 4.2 on p. 103 in [6], and Theorem
1, for n ≥ n0, with n0 sufficiently large, we obtain

n1/4

(ln(n))β
sup
k≥1

|Cn,k − Ck| ≤ n1/4

(ln(n))β
‖Cn − CX‖S(H) →a.s. 0. (13)

Proposition 1 below obtains the strong-consistency of {Dn,j, j ≥ 1} , in-
troduced in equation (8). In the derivation of these strong-consistency re-
sults, the distance between the eigenvalues of the autocovariance operator,
and their rate of convergence to zero, will play a key role. Namely, if the
following quantities are considered:

Λk = sup
1≤j≤k

(Cj − Cj+1)
−1, k ≥ 1, (14)

the rate of divergence of Λkn is crucial, as can be noted in the statements
of Lemma 2 and Proposition 1 (see also Remark 1 below). Henceforth, kn
denotes a truncation parameter, which verifies

lim
n→∞

kn = ∞,
kn
n

< 1, kn ≥ 1. (15)

Lemma 2. Let us consider Λkn introduced in equation (14), for a given trun-
cation parameter kn, as reflected in (15). Assuming that ‖X0‖H is bounded
and Λkn = o

(
n1/4(ln(n))β−1/2

)
, as n → ∞, under Assumption A1, the

following limit then holds

n1/4

(ln(n))β
sup

1≤j≤kn

‖φ′
n,j − φn,j‖H →a.s. 0, n → ∞, (16)

for any β > 1/2, where {φ′
n,j, j ≥ 1} are introduced in equation (5).

Proof. From equation (4.44) in Lemma 4.3 on page 104 of [6], for any
n ≥ 2 and 1 ≤ j ≤ kn,

∥∥φ′
n,j − φn,j

∥∥
H

≤ aj ‖Cn − C‖L(H) ≤ 2
√
2Λkn ‖Cn − C‖S(H) , (17)

which implies that

P
(

sup
1≤j≤kn

‖φ′
n,j − φn,j‖H ≥ η

)
≤ P

(
‖Cn − C‖S(H) ≥

η

2
√
2Λkn

)
.(18)
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Thus, since ‖X0‖H is bounded, from Theorem 4.2 on pp. 99–100 of [6],
under Assumption A1 for any η > 0, and β > 1/2,

P
(

n1/4

(ln(n))β
sup

1≤j≤kn

‖φ′
n,j − φn,j‖H ≥ η

)

≤ P
(
‖Cn − C‖S(H) ≥

η

2
√
2Λkn

(ln(n))β

n1/4

)

≤ 4 exp


−

n
η2

8Λ2
kn

(ln(n))2β

n1/2

γ1 + δ1
η

2
√
2Λkn

(ln(n))β

n1/4




= O


n

− η2

γ1+ηδ1( ln(n)
n )

1/2


 , n → ∞. (19)

Thus, taking η2 > γ1 + δ1η, sequence (19) is summable, and applying Borel-
Cantelli Lemma we arrive to the desired result. �

Proposition 1. Under the conditions of Lemma 2, considering Assump-

tion A1, for β > 1
2
, and n sufficiently large,

n1/4

(ln(n))β
sup
j≥1

|Dn,j −Dj| →a.s. 0, n → ∞, (20)

where {Dn,j, j ≥ 1} are defined in equation (8), and {Dj, j ≥ 1} are given
by Dj = DX(φj)(φj), for every j ≥ 1, with, as before, {φj, j ≥ 1} being the
system of eigenvectors of CX .

Remark 1. Note that, under the conditions of Lemma 2, since ‖X0‖H is
bounded, from Theorem 1, the rate of convergence to zero in Lemma 1 and

Proposition 1 can be improved up to the value (ln(n))β

nγ , for β > 1/2, and
γ ∈ (1/4, 1/2), allowing larger values of the truncation order kn, given by
(15), for a fixed sample size n.

Proof. From Theorem 1, there exists an n0 such that for n ≥ n0, Dn is a

7



Hilbert-Schmidt operator. Then, for n ≥ n0, and for every j,

n1/4

(ln(n))β
|Dn,j −Dj| =

n1/4

(ln(n))β

× |Dn(φn,j)(φn,j)−Dn(φn,j)(φj) +Dn(φn,j)(φj)

−D(φn,j)(φj) +D(φn,j)(φj)−D(φj)(φj)|

≤ n1/4

(ln(n))β
[‖Dn(φn,j)‖H‖φn,j − φj‖H + ‖(Dn −D)(φn,j)‖H‖φj‖H

+‖D(φn,j − φj)‖H‖φj‖H ]

≤ n1/4

(ln(n))β
[
‖Dn‖L(H)‖φn,j − φj‖H + ‖Dn −D‖L(H)

+‖D‖L(H)‖φn,j − φj‖H
]
, (21)

where, as before, {φj, j ≥ 1} and {φn,j, j ≥ 1} respectively denote the
theoretical and empirical eigenvectors of CX , and ‖ · ‖L(H) denotes the norm
in the space of bounded linear operators.

From Theorem 1,

n1/4

(ln(n))β
‖Dn −D‖L(H) ≤

n1/4

(ln(n))β
‖Dn −D‖S(H) →a.s. 0, (22)

and, for n sufficiently large, ‖Dn‖L(H) < ∞. Furthermore, from Lemma 2
(see equation (16)),

n1/4

(ln(n))β
sup

1≤j≤kn

‖φn,j − φj‖H →a.s. 0. (23)

Hence, from equations (22) and (23), taking the supremum in j at the left-
hand side of equation (21), we obtain equation (20). �

4. Strong-consistency in the trace operator norm

In the subsequent developments, we assume that the eigenvectors
{φj, j ≥ 1} of CX are unknown. The diagonal componentwise estimator
of ρ formulated below is then defined in terms of the empirical eigenvectors.

The following condition is assumed in the remainder of this section:

Assumption A2. The empirical eigenvalue Cn,kn > 0 a.s, where kn is the
truncation parameter satisfying the conditions established in (15).
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UnderAssumption A2, from a functional sample of size n, X0, . . . , Xn−1,
the following estimator ρ̂kn of ρ is formulated:

ρ̂kn =

kn∑

j=1

ρn,jφn,j ⊗ φn,j =

kn∑

j=1

Dn,j

Cn,j
φn,j ⊗ φn,j, (24)

where, for each j ≥ 1 and n ≥ 2,

ρn,j =
Dn,j

Cn,j
=

1
n−1

n−2∑

i=0

〈Xi, φn,j〉H 〈Xi+1, φn,j〉H

1
n

n−1∑

i=0

[
〈Xi, φn,j〉H

]2
=

n

n− 1

n−2∑

i=0

Xi,j,nXi+1,j,n

n−1∑

i=0

X2
i,j,n

.

(25)
The strong-consistency of ρ̂kn , in the trace norm, is derived in the following
result under suitable conditions.

Theorem 2. Under Assumption A2, and the conditions assumed in Lemma
2, if ρ is a positive trace operator, then, ρ̂kn, introduced in equations (24)–
(25), is strongly-consistent in the trace norm, i.e.,

‖ρ− ρ̂kn‖1 →a.s. 0, n → ∞, (26)

for kn = o
(

n1/4

(ln(n))β

)
, as n → ∞. Here, ‖·‖1 denotes the trace operator norm.

Consequently, ρ̂kn is also strongly-consistent in the spaces S(H) and L(H).

Proof. From Theorem 1, we have, for n sufficiently large,

‖DnC
−1
n −DXC

−1
X ‖S(H)

= ‖DnC
−1
n −DXC

−1
n +DXC

−1
n −DXC

−1
X ‖S(H)

≤ ‖DnC
−1
n −DXC

−1
n ‖S(H) + ‖DXC

−1
n −DXC

−1
X ‖S(H)

= ‖(Dn −DX)C
−1
n ‖S(H) + ‖DX(C

−1
n − C−1

X )‖S(H),

(27)

since from such a theorem, DXC
−1
n ∈ S(H) for n sufficiently large. Again,

from Theorem 1, equation (27) tends to zero as n → ∞, a.s., which means
that ‖DnC

−1
n −DXC

−1
X ‖S(H) also converges to zero a.s. From Theorem 1 and

equation (27), we also have that there exists an n0 ∈ N such that, for n ≥ n0,
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DnC
−1
n is a positive trace operator almost surely. Considering now n ≥ n0,

for any orthonormal basis {ϕj, j ≥ 1} on H,

‖DnC
−1
n ‖1 =

∞∑

j=1

〈
DnC

−1
n (ϕj), ϕj

〉
H
. (28)

Note also that

‖DXC
−1
X ‖1 =

∞∑

j=1

〈
DXC

−1
X (ϕj), ϕj

〉
H
.

Furthermore, from Lemma 1, as n → ∞, C−1
n,j converges a.s. to C−1

j ,

uniformly in j, with convergence rate at least (ln(n))β

n1/4 , for β > 1/2. The same
assertion holds for the uniform a.s. convergence of Dn,j to Dj , as n → ∞,
from Proposition 1. Consequently, for every j, as n → ∞, Dn,jC

−1
n,j converges

a.s. to DjC
−1
j , with uniform a.s. rate of convergence at least (ln(n))β

n1/4 , for
β > 1/2. Equivalently, from equation (12) in Lemma 1, and equation (20) in
Proposition 1,

‖ρ̂kn‖1 =

kn∑

j=1

Dn,jC
−1
n,j

≤ f(n) = O
(
kn

(ln(n))β

n1/4
+

∞∑

j=1

DjC
−1
j

)
, n → ∞ a.s. (29)

Since kn = o
(

n1/4

(ln(n))β

)
, equation (29) converges a.s., when n → ∞, to

‖DXC
−1
X ‖1 =

∞∑

j=1

DjC
−1
j =

∞∑

j=1

DX(φj)(φj)[CX(φj)(φj)]
−1 = ‖ρ‖1. (30)

For two positive trace operators, K and T , the following identities are
satisfied, for any orthonormal basis {ϕj, j ≥ 1} on H,

‖K − T ‖1 = trace(|K − T |) = max(‖K‖1, ‖T ‖1)−min(‖K‖1, ‖T ‖1)

‖K‖1 =

∞∑

j=1

〈K(ϕj), ϕj〉H , ‖T ‖1 =
∞∑

j=1

〈T (ϕj), ϕj〉H .
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In particular, for n ≥ n0,

‖ρ− ρ̂kn‖1 = max (‖ρ‖1, ‖ρ̂kn‖1)−min (‖ρ‖1, ‖ρ̂kn‖1) . (31)

The limit (26) then follows from equations (29)–(31).
�

The strong consistency in H of the associated ARH(1) plug-in predictor
ρ̂kn(Xn−1) of Xn is now derived.

Corollary 1. Under the conditions of Theorem 2

‖ρ̂kn(Xn−1)− ρ(Xn−1)‖H →a.s. 0, n → ∞. (32)

Proof. The proof directly follows from Theorem 2, keeping in mind that
the convergence in the trace norm implies the convergence in the space L(H)
of bounded linear operators. Moreover,

‖ρ̂kn(Xn−1)− ρ(Xn−1)‖H ≤ ‖ρ̂kn − ρ‖L(H)‖Xn−1‖H →a.s. 0, n → ∞,

since ‖Xn−1‖H < ∞.
�

Remark 2. Note that, when ρ is Hilbert-Schmidt, but it is not positive trace
operator, under the conditions of Lemma 2, and if Assumption A2 holds,
the following a.s. inequality is satisfied, as n → ∞,

‖ρ̂kn − ρ‖2S(H) ≤ ‖ρ‖2S(H)−
∞∑

j=1

[ρ(φj)(φj)]
2 =

∞∑

j 6=k

[
DX(φj)(φk)

Cj

]2
< ∞. (33)
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