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a b s t r a c t

New results on strong-consistency in the trace operator norm are obtained, in the param-
eter estimation of an autoregressive Hilbertian process of order one (ARH(1) process). Ad-
ditionally, a strongly-consistent diagonal componentwise estimator of the autocorrelation
operator is derived, based on its empirical singular value decomposition.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

There exists an extensive literature on Functional Data Analysis (FDA) techniques. In the past few years, the primary
focus of FDA was mainly on independent and identically distributed (i.i.d.) functional observations. The classical book by
Ramsay and Silverman (2005) provides a wide overview on FDA techniques (e.g., regression, principal components analysis,
linearmodeling, canonical correlation analysis, curve registration, and principal differential analysis, etc.). An introduction to
nonparametric statistical approaches for FDA can be found in Ferraty andVieu (2006).We also refer to the recentmonograph
by Hsing and Eubank (2015), where the usual functional analytical tools in FDA are introduced, addressing several statistical
and estimation problems for random elements in function spaces. Special attention is paid to the monograph by Horváth
and Kokoszka (2012) covering functional inference based on second order statistics.

We refer the reader to the methodological survey paper by Cuevas (2014), covering nonparametric techniques and
discussing central topics in FDA. Recent advances on statistics in high/infinite dimensional spaces are collected in the
IWFOS’14 Special Issue published in the Journal of Multivariate Analysis (see Goia and Vieu (2016) who summarized its
contributions, providing a brief discussion on the current literature).

A central issue in FDA is to take into account the temporal dependence of the observations. Although the literature on
scalar and vector time series is huge, there are relatively fewcontributions dealingwith functional time series, and, in general,
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with dependent functional data. For instance, Part III (Chapters 13–18) of the monograph by Horváth and Kokoszka (2012)
is devoted to this issue, including topics related to functional time series (in particular, the functional autoregressivemodel),
and the statistical analysis of spatially distributed functional data. Themoment-basednotion ofweakdependence introduced
in Hörmann and Kokoszka (2010) is also accommodated to the statistical analysis of functional time series. This notion does
not require the specification of a data model, and can be used to study the properties of many nonlinear sequences (see
e.g., Hörmann (2008) and Berkes et al. (2011), for recent applications).

This paper adopts the methodological approach presented in Bosq (2000) for functional time series. That monograph
studies the theory of linear functional time series, both in Hilbert and Banach spaces, focusing on the functional autore-
gressivemodel. Several authors have studied the asymptotic properties of componentwise estimators of the autocorrelation
operator of an ARH(1) process, and of the associated plug-in predictors. We refer to Guillas (2001) and Mas (1999, 2004,
2007), where the efficiency, consistency and asymptotic normality of these estimators are addressed, in a parametric
framework (see also Álvarez-Liébana et al. (2016), on estimation of the Ornstein–Uhlenbeck processes in Banach spaces,
and Álvarez-Liébana et al. (2017), onweak consistency in theHilbert–Schmidt operator normof componentwise estimators).
Particularly, strong-consistency in the norm of the space of bounded linear operators was derived in Bosq (2000). In the
derivation of these results, the autocorrelation operator is usually assumed to be a Hilbert–Schmidt operator, when the
eigenvectors of the autocovariance operator are unknown. This paper proves that, under basically the same setting of
conditions as in the cited papers, the componentwise estimator of the autocorrelation operator proposed in Bosq (2000),
based on the empirical eigenvectors of the autocovariance operator, is also strongly-consistent in the Hilbert–Schmidt and
trace operator norms.

The dimension reduction problem constitutes also a central topic in the parametric, nonparametric and semiparametric
FDA statistical frameworks. Special attention to this topic has been paid, for instance, in the context of functional regression
with functional response and functional predictors (see, for example, Ferraty et al. (2012), where asymptotic normality
is derived, and, Ferraty et al. (2002), in the functional time series framework). In the semiparametric and nonparametric
estimation techniques, a kernel-based formulation is usually adopted. Real-valued covariateswere incorporated in the novel
semiparametric kernel-based proposal by Aneiros-Pérez and Vieu (2008), providing an extension to the functional partial
linear time series framework (see also Aneiros-Pérez andVieu (2006)).Motivated by spectrometry applications, a two-terms
Partitioned Functional Single Index Model is introduced in Goia and Vieu (2015), in a semiparametric framework. In the
ARH(1) process framework, the present paper provides a new diagonal componentwise estimator of the autocorrelation
operator, based on its empirical singular value decomposition. Its strong-consistency is proved as well. The diagonal
design leads to an important dimension reduction, going beyond the usual isotropic restriction on the kernels involved
in the approximation of the regression operator (respectively, autocorrelation operator), in the nonparametric framework.
Recently, Petrovich and Reimherr (2017) address the dimension reduction provided by the functional principal component
projections in the general case when eigenvalues can be repeated, instead of the classical assumptions that their multiplicity
should be one.

The outline of the paper is the following. Section 2 introduces basic definitions and preliminary results. Section 3 derives
strong-consistency of the estimator introduced in Bosq (2000), in the trace norm. Section 4 formulates a strongly-consistent
diagonal componentwise estimator of the autocorrelation operator. Proofs of the results are given in the Supplementary
Material.

2. Preliminaries

Let H be a real separable Hilbert space, and let X = {Xn, n ∈ Z} be a zero-mean ARH(1) process on the probability space
(Ω,A, P), satisfying:

Xn = ρ (Xn−1)+ εn, n ∈ Z, (1)

where ρ ∈ L(H), with L(H) being the space of bounded linear operators, with the uniform norm ∥A∥L(H) = supf∈H; ∥f ∥H≤1
A(f ), for every A ∈ L(H). In our case, ρ ∈ L(H) satisfies ∥ρk

∥L(H) < 1, for k ≥ k0, and for some k0, where ρk denotes the
kth power of ρ, i.e., the composition operator ρ. . .

k
ρ. The H-valued innovation process ε = {εn, n ∈ Z} is assumed to be

a strong white noise, and to be uncorrelated with the random initial condition. X then admits the MAH(∞) representation
Xn =

∑
∞

k=0 ρ
k (εn−k) , for n ∈ Z, providing the unique stationary solution to Eq. (1) (see Bosq (2000)).

The trace autocovariance operator of X is given by CX = E[Xn ⊗ Xn] = E[X0 ⊗ X0], for n ∈ Z, and its empirical version Cn
is defined as

Cn =
1
n

n−1∑
i=0

Xi ⊗ Xi, n ≥ 2, (2)

where, for f ∈ H, and i, j ∈ N, the random operator Xi ⊗Xj is given by
(
Xi ⊗ Xj

)
(f ) = ⟨Xi, f ⟩HXj. In the following,

{
Cj, j ≥ 1

}
and {φj, j ≥ 1} denote the respective sequence of eigenvalues and eigenvectors of the autocovariance operator CX , satisfying
CX (φj) = Cjφj, for j ≥ 1. Also, by {Cn,j, j ≥ 1} and {φn,j, j ≥ 1} we respectively denote the empirical eigenvalues and
eigenvectors of Cn (see Bosq (2000), pp. 102–103),

Cnφn,j = Cn,jφn,j, j ≥ 1, Cn,1 ≥ · · · ≥ Cn,n ≥ 0 = Cn,n+1 = Cn,n+2 . . . (3)
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Consider now the nuclear cross-covariance operator DX = E[Xi ⊗ Xi+1] = E[X0 ⊗ X1], i ∈ Z, and its empirical version
Dn =

1
n−1

∑n−2
i=0 Xi ⊗ Xi+1, n ≥ 2.

The following assumption will appear in the subsequent development.

Assumption A1. The random initial condition X0 of X in (1) satisfies ∥X0∥H < M, a.s., for some M. Here, a.s. denotes
almost surely.

Theorem 1 (See Theorem 4.1 on pp. 98–99, Corollary 4.1 on pp. 100–101 and Theorem 4.8 on pp. 116–117, in Bosq (2000)). If
E
[
∥X0∥

4
H

]
< ∞, for any β > 1

2 , as n → ∞,

n1/4

(ln(n))β
∥Cn − CX∥S(H) →

a.s. 0,
n1/4

(ln(n))β
∥Dn − DX∥S(H) →

a.s. 0, (4)

where →
a.s. means almost surely convergence. Under Assumption A1,

∥Cn − CX∥S(H) = O

((
ln(n)
n

)1/2
)

a.s.,

∥Dn − DX∥S(H) = O

((
ln(n)
n

)1/2
)

a.s., (5)

where ∥·∥S(H) is the Hilbert–Schmidt operator norm.

Let kn be a truncation parameter such that limn→∞ kn = ∞, kn
n < 1, and

Λkn = sup
1≤j≤kn

(Cj − Cj+1)−1. (6)

3. Strong-consistency in the trace operator norm

This section derives the strong-consistency of the componentwise estimator ρ̃kn (see Eq. (9)), in the trace norm, which
also implies its strong-consistency in the Hilbert–Schmidt operator norm. As it is well-known, for a trace operator K on H,
its trace norm ∥K∥1 is finite, and, for an orthonormal basis {ϕn, n ≥ 1} of H, such a norm is given by

∥K∥1 =

∞∑
n=1

⟨√
K⋆K(ϕn), ϕn

⟩
H
. (7)

In Theorem 2, the following lemma will be applied:

Lemma 1. Under Assumption A1, if, as n → ∞, knΛkn = o
(√

n
ln(n)

)
,

sup
x∈H, ∥x∥H≤1

ρ(x) −

kn∑
j=1

⟨
ρ(x), φn,j

⟩
H φn,j


H

→a.s. 0, n → ∞. (8)

The proof of this lemma is given in the Supplementary Material.
The following condition is assumed in the remainder of this section:

Assumption A2. The empirical eigenvalue Cn,kn > 0 a.s, where kn denotes the truncation parameter introduced in the
previous section.

Under Assumption A2, from the observations of X0, . . . , Xn−1, consider the componentwise estimator ρ̃kn of ρ (see (8.59)
p. 218 in Bosq (2000))

ρ̃kn (x) =
H
π̃ knDn[Cn[π̃ kn ]⋆]−1(x) = π̃ knDnC̃−1

n (x)

=
H

kn∑
j=1

kn∑
p=1

⟨
DnC−1

n (φn,j), φn,p
⟩
H φn,p

⟨
φn,j, x

⟩
H , ∀x ∈ H, (9)

where C̃−1
n is the inverse of the restriction of Cn to its principal eigenspace of dimension kn, Sp

∥·∥H
{φn,j; j = 1, . . . kn} ⊆ H,

which is bounded under Assumption A2, where Sp
∥·∥H denotes the closed span in the norm of H. Here, [π̃ kn ]⋆ denotes the

projection operator into Sp
∥·∥H

{φn,j; j = 1, . . . kn}, and π̃ kn is its adjoint or inverse.
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Theorem 2. Let ρ ∈ L(H) be the autocorrelation operator defined as before. AssumeΛkn in (6) satisfies
√
knΛkn = o

(
n1/4

(ln(n))β

)
as n → ∞, for β > 1/2. Then, for ρ̃kn in (9), the following assertions hold:

(i) If E
[
∥X0∥

4
H

]
< ∞, under Assumption A2,

∥̃ρkn − π̃ knρ[π̃ kn ]⋆∥1 →
a.s. 0, n → ∞. (10)

(ii) Under Assumptions A1–A2, if ρ is a trace operator, then,

∥̃ρkn − ρ∥1 →
a.s. 0, n → ∞. (11)

The proof of this result is given in the Supplementary Material.
The strong consistency in H of the associated ARH(1) plug-in predictor ρ̃kn (Xn−1) of Xn then follows (see also Bosq (2000)

and the Supplementary Material).

4. A strongly-consistent diagonal componentwise estimator

In this section, we consider the following assumption:

Assumption A3. Assume that CX is strictly positive, i.e., Cj > 0, for every j ≥ 1, and DX is a nuclear operator such that
ρ = DXC−1

X is compact.

Under Assumption A3, ρ admits the singular value decomposition(svd)

ρ(x) =
H

∞∑
j=1

ρj
⟨
x, ψj

⟩
H ψ̃j, ∀x ∈ H, (12)

where, for every j ≥ 1, ρ(ψj) = ρjψ̃j, with ρj ∈ C being the singular value, and ψj and ψ̃j the right and left eigenvectors,
respectively. Since DX is a nuclear operator, it admits the svd DX (h) =

H

∑
∞

j=1 dj
⟨
h, ϕj

⟩
H ϕ̃j, h ∈ H, where {ϕj, j ≥ 1} and

{̃ϕj, j ≥ 1} are the respective right and left eigenvectors of DX , and dj, j ≥ 1, are the singular values. Dn is also nuclear, and
Dn(h) =

H

∑
∞

j=1 dn,j
⟨
h, ϕn,j

⟩
H ϕ̃n,j, h ∈ H,with {ϕn,j, j ≥ 1} and {̃ϕn,j, j ≥ 1} being the right and left eigenvectors, respectively,

and dn,j, j ≥ 1, the singular values. Applying Lemma 4.2, on p. 103, in Bosq (2000),

sup
j≥1

|Cj − Cn,j| ≤ ∥CX − Cn∥L(H) ≤ ∥CX − Cn∥S(H) →a.s. 0, n → ∞

sup
j≥1

|dj − dn,j| ≤ ∥DX − Dn∥S(H) →a.s. 0, n → ∞. (13)

From Theorem 1 (see Eq. (13)), under the conditions assumed in such a theorem, for n sufficiently large, in view of
Assumption A3, the composition operator DnC−1

n is compact on H, admitting the svd

DnC−1
n (h) =

n∑
j=1

ρ̂n,jψ̃n,j
⟨
h, ψn,j

⟩
H , ∀h ∈ H, (14)

where DnC−1
n (ψn,j) = ρ̂n,jψ̃n,j, for j = 1, . . . , n, with {ψn,j, j ≥ 1} and {ψ̃n,j, j ≥ 1} being the empirical right and left

eigenvectors of ρ.

Proposition 1. Under conditions in Theorem 2(ii), and Assumption A3,

∥DnC−1
n − DXC−1

X ∥L(H) →a.s. 0, n → ∞. (15)

The proof of this proposition directly follows from

sup
x∈H:∥x∥H≤1

∥DnC−1
n (x) − DXC−1

X (x)∥H

≤ 2∥DnC−1
n ∥L(H)

⎡⎣ kn∑
j=1

∥φ′

n,j − φn,j∥H +

∞∑
j=kn+1

φ′

n,j


H

⎤⎦
+∥̃ρkn − DXC−1

X ∥L(H) →a.s. 0, n → ∞, (16)

where φ′

n,j = sgn⟨φj, φn,j⟩Hφj, with sgn⟨φj, φn,j⟩H = 1⟨φj,φn,j⟩H≥0 − 1⟨φj,φn,j⟩H<0. Under Assumption A3, Eq. (15) holds, if the
conditions assumed in Bosq (2000) for the strong-consistency of ρ̃kn in L(H) hold. From Proposition 1, and (12) and (14),
applying Lemma 4.2, on p. 103 in Bosq (2000),

sup
j≥1

⏐⏐̂ρn,j − ρj
⏐⏐ ≤ ∥DnC−1

n − DXC−1
X ∥L(H) →

a.s. 0, n → ∞. (17)
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Let us define the following quantity:

Λ
ρ

kn = sup
1≤j≤kn

(|ρj|2 − |ρj+1|
2)−1, (18)

where kn denotes the truncation parameter introduced in Section 2. We now apply the methodology of the proof of Lemma
4.3, on p. 104, and Corollary 4.3, on p. 107, in Bosq (2000), to obtain the strong-consistency of the empirical right and left
eigenvectors, {ψn,j, j ≥ 1} and {ψ̃n,j, j ≥ 1} of ρ, under the following additional assumption:

Assumption A4. Consider
[
supj≥1 |ρj| + supj≥1 |̂ρn,j|

]
≤ 1.

Lemma 2. Under Assumptions A3–A4, and the conditions of Theorem 2(ii), ifΛρkn in (18) satisfiesΛρkn = o
(

1
Mn

)
, with Mn ∈ R

such that ∥DnC−1
n − DXC−1

X ∥L(H) = O (Mn) , a.s., as n → ∞, then,

sup
1≤j≤kn

∥ψn,j − ψ ′

n,j∥H →a.s. 0, sup
1≤j≤kn

∥ψ̃n,j − ψ̃ ′

n,j∥H →a.s. 0, (19)

where, for j ≥ 1, n ≥ 2, ψ ′

n,j = sgn
⟨
ψn,j, ψj

⟩
H ψj ψ̃ ′

n,j = sgn
⟨
ψ̃n,j, ψ̃j

⟩
H ψ̃j, with sgn⟨ψn,j, ψj⟩H = 1⟨ψn,j,ψj⟩H≥0 − 1⟨ψn,j,ψj⟩H<0

and sgn⟨ψ̃n,j, ψ̃j⟩H = 1⟨ψ̃n,j,ψ̃j⟩H≥0 − 1⟨ψ̃n,j,ψ̃j⟩H<0.

The proof of this lemma is given in the Supplementary Material.
The following diagonal componentwise estimator ρ̂kn of ρ is formulated:

ρ̂kn (x) =

kn∑
j=1

ρ̂n,j
⟨
x, ψn,j

⟩
H ψ̃n,j, ∀x ∈ H. (20)

The next result derives the strong-consistency of ρ̂kn .

Theorem 3. Under the conditions of Lemma 2, if knΛ
ρ

kn = o
(

1
Mn

)
, with Mn ∈ R such that ∥DnC−1

n − DXC−1
X ∥L(H) = O (Mn) ,

a.s., as n → ∞, then, ∥̂ρkn − ρ∥L(H) →a.s. 0, as n → ∞.

The proof of this result is given in the Supplementary Material.
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