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Abstract
The functional linear model with functional response
(FLMFR) is one of the most fundamental models to
assess the relation between two functional random vari-
ables. In this article, we propose a novel goodness-of-fit
test for the FLMFR against a general, unspecified, alter-
native. The test statistic is formulated in terms of a
Cramér–von Mises norm over a doubly projected empir-
ical process which, using geometrical arguments, yields
an easy-to-compute weighted quadratic norm. A resam-
pling procedure calibrates the test through a wild boot-
strap on the residuals and the use convenient computa-
tional procedures. As a sideways contribution, and since
the statistic requires a reliable estimator of the FLMFR,
we discuss and compare several regularized estimators,
providing a new one specifically convenient for our test.
The finite sample behavior of the test is illustrated via
a simulation study. Also, the new proposal is compared
with previous significance tests. Two novel real data sets
illustrate the application of the new test.
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1 INTRODUCTION

The increasing availability of data for continuous processes has boosted the field of functional data
analysis (FDA) in the last decades as a powerful tool to take advantage of the complexity and rich
structure of this kind of data, difficult to manage for many traditional statistical techniques given
their intrinsically infinite dimensionality. Some of the main monographs in FDA are Ramsay
and Silverman (2005), Ferraty and Vieu (2006), Horváth and Kokoszka (2012), and Hsing and
Eubank (2015).

Regression models with functional covariates and/or responses emerged as natural general-
izations of multivariate ones. A specific instance arises when assessing the relation between two
functional random variables  and  via a general regression model  = m() +  , where  is a
functional random error. The main difference with the multivariate case is that here m is an oper-
ator between function spaces, typically of a Hilbertian nature, therefore generalizing the usual
Euclidean–Euclidean regression mapping. Nonparametric estimation of m was addressed by Fer-
raty, Laksaci, Tadj, and Vieu (2011) and Lian (2011), who investigated the rates of convergence of
kernel and k-nearest neighbors regression estimates, respectively. Moreover, Ferraty, Keilegom,
and Vieu (2012) studied the nonparametric estimation of m by considering data-driven bases and
consistent bootstrap approaches.

However, much of the existing regression literature is concerned with (infinite-dimensional)
parametric modeling, where the operator m is assumed to belong to a given parametric fam-
ily. As an early precedent, the simplest and best-known paradigm is the functional linear model
with scalar response (FLMSR), Y = m𝜌() + 𝜀, where 𝜀 is a real-valued error and m𝜌 is a lin-
ear functional depending on a function 𝜌. Within the FLMSR, the so-called functional principal
components regression (FPCR) was introduced by Cardot, Ferraty, and Sarda (1999) as a parsi-
monious estimation approach. Crambes, Kneip, and Sarda (2009) proposed a smoothing splines
estimator, whereas Aguilera and Aguilera-Morillo (2013) formulated penalized FPCR estimation
techniques based on B-splines. Alternatively, functional partial least squares regression was pro-
posed in Preda and Saporta (2005). Some authors have also studied the relation of a functional
response and a scalar regressor, see Chiou, Müller, Wang, and Carey (2003).

By contrast, the functional linear model with functional response (FLMFR),  = m() +  ,
where m is a linear operator, has received considerably less attention. When a Hilbertian frame-
work is considered, m ≡ m𝛽 is usually assumed to be a Hilbert–Schmidt operator between L2

spaces admitting an integral representation in terms of a bivariate kernel 𝛽. Ramsay and Silver-
man (2005) proposed to estimate 𝛽 based on minimizing the residual sum of squared norms.
Motivated by signal transmission problems, Cuevas, Febrero, and Fraiman (2002) provided an
estimator considering a fixed and triangular design. An estimator in terms of the Karhunen–Loève
expansions of functional response and regressor was discussed in Yao, Müller, and Wang (2005).
Crambes and Mas (2013) provided asymptotic results for prediction under the FLMFR through
the Karhunen–Loève expansion of the functional regressor, whereas Imaizumi and Kato (2018)
derived minimax optimal rates. An estimation based on functional canonical correlation analy-
sis was suggested in He, Müller, Wang, and Yang (2010). The FLMFR when both response and
covariate are densities was analyzed in Park and Qian (2012).

Several authors have contributed to the goodness-of-fit (GoF) framework for regression mod-
els, see González-Manteiga and Crujeiras (2013) for a comprehensive review. The first attempts,
following the ideas of Bickel and Rosenblatt (1973) in scalar and multivariate contexts, were
focused on smoothing-based tests, see Härdle and Mammen (1993). Alternatively, upon the work
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of Durbin (1973), and aimed at solving the sensitiveness of those approaches to the smooth-
ing parameter, Stute (1997) proposed a GoF test based on the integrated regression function.
Extending this work to the high-dimensional context, Escanciano (2006) proposed a GoF test,
in terms of a residual marked empirical process based on projections, designed to overcome the
poor empirical power inherent to the curse of dimensionality. Promoting these ideas to the FDA
context, García-Portugués, González-Manteiga, and Febrero-Bande (2014) and Cuesta-Albertos,
García-Portugués, Febrero-Bande, and González-Manteiga (2019) derived an easily computable
GoF test for the FLMSR in terms of projections. The former proposed a methodology based on the
projected empirical estimator of the integrated regression function, whereas the latter considered
marked empirical process indexed by a single randomly projected functional covariate, providing
a more computationally efficient test.

In addition to the GoF proposals for the FLMSR discussed above, Delsol, Ferraty, and
Vieu (2011) formulated a kernel-based test for model assumptions, whereas Bücher, Dette, and
Wieczorek (2011) introduced testing procedures well adapted for the time-variation of direc-
tional profiles. Generalized likelihood ratio tests were suggested in McLean, Hooker, and Rup-
pert (2015) to test the linearity of functional generalized additive models. Staicu, Lahiri, and
Carrol (2015) tested the equality of multiple group mean functions for hierarchical functional
data. In the context of semifunctional partial linear model, where the scalar response is regressed
on multivariate and functional covariates, Aneiros-Pérez and Vieu (2013) tested the simple lin-
ear null hypothesis. In the FLMSR setup, a comparative study has been recently provided by
Yasemin-Tekbudak, Alfaro-Córdoba, Maity, and Staicu (2019), comparing GoF tests in Horváth
and Reeder (2013), García-Portugués et al. (2014), McLean et al. (2015), and Kong, Staicu, and
Maity (2016).

The extension of these GoF proposals to the FLMFR context is currently an open challenge.
This model is being applied to a wide range of fields, such as electricity market (Benatia, Car-
rasco, & Florens, 2017), biology (He et al., 2010), or the study of lifetime patterns (Imaizumi
& Kato, 2018), to cite but some, hence the practical relevance of developing a GoF test for
it. Testing the lack of effect, which is actually a particular case of the FLMFR, has received
considerable attention: Kokoszka, Maslova, Sojka, and Zhu (2008) proposed an FPC-based sig-
nificance test within the FLMFR; Patilea, Sánchez-Sellero, and Saumard (2016b) introduced a
kernel-based significance test consistent to nonlinear alternatives; Lee, Zhang, and Shao (2020)
proposed a significance test, within the FLMFR, using an extension to the functional setup of
the correlation-based metric adopted in Park, Shao, and Yao (2015). Related testing approaches
within the FLMFR include those of Chiou and Müller (2007), which addressed the devel-
opment of a FPC-based residual diagnostic tool, and Gabrys, Horváth, and Kokoszka (2010),
which tested if functional residuals are independent and identically distributed (iid). Shar-
ing the aim of the time-domain-based test in Gabrys et al. (2010), Zhang (2016) has recently
proposed a Cramér–von Mises test for the functional white noise, with applications to assess-
ing the uncorrelatedness of the residuals in FLMFR and functional autoregressive model fits,
but under a frequency-domain framework, in terms of the functional periodogram previously
derived in Panaretos and Tavakoli (2013). Empirical likelihood ratio tests were formulated by
Wang, Zhong, Cui, and Li (2018) for concurrent models. No proposals extending the generalized
likelihood ratio test approach seem to exist for the FLMFR. As a consequence, the develop-
ment of GoF tests for the FLMFR, against unspecified alternatives, is an area still substantially
unexplored.

In this article, we propose a GoF test for the FLMFR, that is, for testing the composite null
hypothesis
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0 ∶ m ∈  =

{
m𝛽()(t) = ∫

b

a
(s)𝛽(s, t) ds ∶ 𝛽 ∈ L2([a, b] × [c, d])

}
.

Our methodology is based on characterizing 0 in terms of the integral regression opera-
tor arising from a double projection, of the functional covariate and the response, in terms of
finite-dimensional functional directions. The deviation of the resulting empirical process from its
expected zero mean is measured by a Cramér–von Mises statistic that integrates on both func-
tional directions and is calibrated via an efficient wild bootstrap on the residuals. We show that
our GoF test exhibits an adequate behavior, in terms of size and power, for the composite hypothe-
sis, under two common scenarios: the no effects model and the FLMFR. In addition, since the test
can be readily modified for the simple hypothesis 𝛽 ≡ 0, we compare our GoF test with the proce-
dures from Kokoszka et al. (2008) and Patilea et al. (2016b), obtaining competitive powers. As a
by-product contribution, we provide a convenient hybrid approach for the estimation of 𝛽 based
on LASSO (Tibshirani, 1996) regularization and linearly constrained least-squares. The compan-
ion R package goffda (García-Portugués & Álvarez-Liébana, 2020) implements all the methods
presented in the article and allows for replication of the real data applications.

The rest of this article is organized as follows. Section 2 introduces the required background
on FDA and the FLMFR, addressing the estimation of the regression operator and providing a
brief comparative study between different estimation techniques. Section 3 is devoted to the theo-
retical, computational, and resampling aspects of the new GoF test. A comprehensive simulation
study and a real data application are presented in Sections 4 and 5, respectively. Conclusions
are drawn in Section 6. The appendix contains the proofs of the lemmas and the Supporting
Information (SI) provides another data application.

2 FUNCTIONAL DATA AND THE FLMFR

We consider Hilbert spaces H1 and H2, with an inner-product structure, and we impose separa-
bility, required for the existence of countable functional bases.

2.1 Functional bases

Given the functional bases {Ψj}∞j=1 and {Φk}∞k=1 in the separable Hilbert spaces H1 and H2, respec-
tively, any elements ∈ H1 and ∈ H2 can be represented as =

∑∞
j=1 xjΨj and =

∑∞
k=1 ykΦk,

where xj = ⟨ ,Ψj⟩H1
and yk = ⟨ ,Φk⟩H2

, for each j, k≥ 1. Typical examples are the B-splines
basis (nonorthogonal piecewise polynomial bases) or the Fourier basis. Both bases are of a deter-
ministic nature and, despite their flexibility, usually require a larger number of elements to
adequately represent a functional sample {i}n

i=1. A more parsimonious representation can be
achieved by considering data-driven orthogonal bases, being the most popular choice the (empir-
ical) functional principal components (FPC) of {i}n

i=1, {Ψ̂j}n
j=1, the eigenfunctions of the sample

covariance operator.
To develop the test, we will consider a p-truncated basis {Ψj}p

j=1 in H1, corresponding to
the first p elements of {Ψj}∞j=1. The projection of  on this truncated basis is denoted by
 (p) =

∑p
j=1 xjΨj and we set xp:= (x1, … , xp). We will also require to integrate on the func-

tional analogue of the Euclidean (p− 1)-sphere Sp−1 = {x ∈ Rp ∶ ||x|| = 1}, the (p− 1)-sphere
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of H1 on {Ψj}∞j=1 defined as S
p−1
H1,{Ψj}∞j=1

∶= {f =
∑p

j=1 xjΨj ∈ H1 ∶ ||f ||H1
= 1}. The relationship

between Sp−1 and S
p−1
H1,{Ψj}∞j=1

follows easily (García-Portugués et al., 2014) considering the posi-

tive semidefinite matrix 𝚿 = (⟨Ψj,Ψ𝓁⟩H1
)j,𝓁=1,… ,p, whose Cholesky decomposition is 𝚿 = P′

pPp.
Then, the (p− 1)-ellipsoid S

p−1
𝚿 = {x ∈ Rp ∶ x′𝚿x = 1} is trivially isomorphic with S

p−1
H1,{Ψj}∞j=1

by

f =
∑p

j=1 xjΨj ∈ S
p−1
H1,{Ψj}∞j=1

→ xp ∈ S
p−1
𝚿 . Considering also the linear mapping x ∈ Sp−1 → P−1

p x ∈

S
p−1
𝚿 , the integration of a functional operator  with respect to 𝛾 (p) ∈ S

p−1
H1,{Ψj}∞j=1

can be written as

∫
S

p−1
H1 ,{Ψj}

∞
j=1

 (𝛾 (p)) d𝛾 (p) = ∫
S

p−1
𝚿


( p∑

j=1
gjΨj

)
dgp = ∫

Sp−1
|Pp|−1

( p∑
j=1

(P−1
p gp)jΨj

)
dgp, (1)

where (P−1
p gp)j denotes the jth component of the vector P−1

p gp and gp is the vector of coefficients
of 𝛾 (p) in the p-truncated basis. If the basis is orthonormal, then 𝚿 and Pp are the identity matrices
of order p, denoted as Ip, and gp ∈ Sp−1 without any transformation. Clearly, an analogous devel-
opment can be established for S

q−1
H2,{Φk}∞k=1

by means of 𝚽 = (⟨Φk,Φ𝓁⟩H2
)k,𝓁=1,… ,q where {Φk}q

k=1 is
a q-truncated basis in H2.

2.2 The FLMFR

We consider the context of functional regression with H2-valued functional response  and
H1-valued functional covariate  :

 = m() +  , (2)

where the regression operator is defined as m() = E[| = ] and the H2-valued error is such
that E[|] = 0. Within this setting, we assume that  and  are already centered so there is no
need for an intercept term in (2). Particularly, we consider L2 spaces and assume, in what follows,
that  ∈ H1 = L2([a, b]) and  ∈ H2 = L2([c, d]), unless otherwise explicitly mentioned.

In this context, the simplest parametric model is the FLMFR, in which the regression opera-
tor m ∶ H1 → H2 is usually assumed to be a Hilbert–Schmidt integral operator, that is, m admits
an integral representation m𝛽 given by a bivariate kernel 𝛽 ∈ H1 ⊗ H2 = L2([a, b] × [c, d]) as
follows:

m𝛽()(t) = ∫
b

a
𝛽(s, t)(s) ds, t ∈ [c, d]. (3)

In particular, the Hilbert–Schmidt condition directly implies that m is a compact operator,
that is, 𝛽 can be decomposed in terms of the tensor product of any pair of bases in H1 and H2,
since such tensor product constitutes a basis on the space of Hilbert–Schmidt operators. As a
consequence,

𝛽 =
∞∑

j=1

∞∑
k=1

bjk(Ψj ⊗Φk), bjk =
⟨𝛽,Ψj ⊗Φk⟩H1⊗H2||Ψj||2

H1
||Φk||2

H2

, (4)
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with j, k≥ 1. For convenience, we denote the linear integral operator in (3) by ⟨⟨⋅ ,⋆⟩⟩, defined as⟨⟨⋅, ⋆⟩⟩ ∶ H1 × (H1 ⊗ H2) → H2, ⟨⟨ , 𝛽⟩⟩(t) ∶= ⟨ , 𝛽(⋅, t)⟩H1
. Therefore, the FLMFR from (2) to

(3) can be succinctly denoted as

 = ⟨⟨ , 𝛽⟩⟩ +  . (5)

Bearing in mind that  =
∑∞

j=1 xjΨj and  =
∑∞

k=1 ykΦk, then

⟨⟨ , 𝛽⟩⟩ = ⟨⟨ ∞∑
j=1

xjΨj,

∞∑
𝓁=1

∞∑
k=1

b𝓁k(Ψ𝓁 ⊗Φk)

⟩⟩
=

∞∑
j=1

∞∑
𝓁=1

∞∑
k=1

b𝓁kxj⟨Ψj,Ψ𝓁⟩H1
Φk, (6)

with ⟨Ψj,Ψ𝓁⟩H1
= 𝛿j𝓁 , j,𝓁 ≥ 1, for orthonormal bases. From (6) and  =

∑∞
k=1 ekΦk,

yk =
∞∑

j=1

∞∑
𝓁=1

b𝓁kxj⟨Ψj,Ψ𝓁⟩H1
+ ek, k ≥ 1.

This (infinite) linear model is usually approached by projecting the variables in the truncated
bases {Ψj}p

j=1 and {Φk}q
k=1 (Ramsay & Silverman, 2005, chapter 16), obtaining the (p, q)-truncated

population version

yk =
p∑

j=1

p∑
𝓁=1

b𝓁kxj⟨Ψj,Ψ𝓁⟩H1
+ ek, k = 1, … , q. (7)

Note that an equivalent way of expressing (7) is  (q) = ⟨⟨ (p), 𝛽(p,q)⟩⟩ +  (q), where 𝛽(p,q) is the
projection of (4) into {Ψj ⊗Φk}p,q

j,k=1.
Now, given an iid centered sample {(i,i)}n

i=1 such that i = ⟨⟨i, 𝛽⟩⟩ + i, the sample
version of (7) is expressed in matrix form as

Yq = Xp𝚿Bp,q + Eq, (8)

where Yq and Eq are the n× q matrices with the coefficients of {i}n
i=1 and {i}n

i=1, respectively,
on {Φk}q

k=1, Xp is the n× p matrix of coefficients of {i}n
i=1 on {Ψj}p

j=1, and Bp, q is the p× q matrix
of unknown coefficients on {Ψj ⊗Φk}p,q

j,k=1. Observe that these matrices are centered by columns
and hence the model does not have an intercept. Clearly, due to the form of (8), estimators for
𝛽 in (4) readily follow from the linear model theory. We discuss them next, focusing exclusively
on orthonormal bases. This can be done without loss of generality; just replace Xp by X̆p ∶= Xp𝚿
subsequently for nonorthonormal bases.

2.3 Model estimation

FPCR considers in (8) the data-driven bases given by the (empirical) FPC {Ψ̂j}p
j=1

and {Φ̂k}q
k=1 of {i}n

i=1 and {i}n
i=1, respectively, where p, q≤n. The estimator of 𝛽 is

then defined as the least-squares estimator of the (p, q)-truncated model given in (7)
and (8):
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B̂p,q = arg min
Bp,q

||Yq − XpBp,q||2 = arg min
𝛽(p,q)

n∑
i=1

|| (q)
i − ⟨⟨ (p)

i , 𝛽(p,q)⟩⟩||2.
Clearly, least-squares estimation gives B̂p,q = (X′

pXp)−1X′
pYq, with (B̂p,q)jk = b̂jk, j= 1, … , p,

k= 1, … , q. The estimator of 𝛽(p,q) is then 𝛽
(p,q) =

∑p
j=1

∑q
k=1 b̂jk(Ψ̂j ⊗ Φ̂k).

The estimator 𝛽(p,q) critically depends on (p, q), hence an automatic data-driven selection of
(p, q) is of most practical interest. A possibility is to extend the predictive cross-validation criterion
from Preda and Saporta (2005) to the FLMFR context, at expenses of a likely high computational
cost (cross-validation on two indexes). Alternatives based on the generalized cross-validation pro-
cedure (Cardot, Ferraty, Mas, & Sarda, 2003) or a stepwise model selection approach based on the
BIC criterion could be studied, but neither the degrees of freedom or the likelihood function are
immediate to estimate in the FLMFR setup. A feasible possibility, though not regression-driven,
is to select p and q as the minimum number of components associated with a certain proportion
of Explained Variance (EVp and EVq), for example, such that EVp =EVq = 0.99. This simple rule
provides an initial selection which can be subsequently improved.

Regularization techniques provide an estimation alternative that, due to their flexibility and
efficient computational implementations (Friedman, Hastie, & Tibshirani, 2010), have been
remarkably popular in the last decades. The so-called elastic-net regularization of Bp, q gives the
estimator

B̂(𝜆)
p,q = arg min

Bp,q

{
1

2n

n∑
i=1

||(Yq)i − (XpBp,q)i||2 + 𝜆

[
1 − 𝛼

2
||Bp,q||2F + 𝛼

p∑
j=1

||(Bp,q)j||2]} ,

where 𝜆 ≥ 0 is the penalty parameter, 𝛼 ∈ [0, 1], || ⋅ ||F is the Frobenius norm, and (A)i stands for
the ith row of the matrix A. If 𝜆 = 0, then we the usual FPCR follows. Cases 𝛼 = 0 and 𝛼 = 1
correspond to ridge (henceforth denoted as FPCR-L2) and LASSO (FPCR-L1) regression, respec-
tively. The former does a global penalization in all the entries of Bp, q, whereas the latter applies
a rowwise penalization that effectively zeroes full rows, hence removing predictors. Therefore,
the key advantage of the FPCR-L1 is that it enables variable selection: p and q are initially fixed
but only p̃ ≤ p components are selected. On the other hand, FPCR-L2 exhibits an important
advantage when employed within the bootstrap algorithm to be described in Section 3.3: the esti-
mation Ŷq = XpB̂(𝜆)

p,q can be reexpressed as Ŷq = H(𝜆)Yq, where H(𝜆) = Xp(X′
pXp + 𝜆Ip)−1X′

p is the
hat matrix for the FPCR-L2 estimator. The lack of an analogous result for the FPCR-L1 estima-
tor notably increases the bootstrapping cost. Finally, note that 𝜆 can be selected with reasonable
efficiency through leave-one-out cross-validation (�̂�CV), as implemented in Friedman et al. (2010).

As a way to exploit the advantages of both FPCR-L1 and FPCR-L2, we propose a hybrid
approach, termed FPCR-L1-selected (FPCR-L1S) estimator, which first implements FPCR-L1 for
variable selection, and then performs FPCR estimation with the predictors selected by FPCR-L1
(see Remark 7 on variable selection by FPCR-L1). Therefore, FPCR-L1S has a hat matrix that is
very convenient for the latter bootstrap algorithm:

H(𝜆)
C = X̃p̃(X̃

′
p̃X̃p̃)−1X̃′

p̃, (9)

where X̃p̃ is the matrix of the coefficients of the p̃ selected predictors (which can be nonconsecutive
FPC). This variable selection is a crucial advantage, as clearly the number of FPC for representing
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T A B L E 1 Summary of the simulated scenarios

Scenario Kernel 𝜷(s, t)  (s) (t)
S1 (s− a)2 + (t − c)2 CM BM

S2 2[sin(6𝜋(s − a)) + cos(6𝜋(t − c))] GP OU

S3 𝛽(s, t) =
∑∞

j=1
∑∞

k=1 bj,kΦj(s)Ψk(t) with bjk = 0 if j, k≤ 4, IK IK

bjk = 6(−1)j+k(j − 4)−12∕5(k − 4)−1∕4 otherwise

 and up to a certain EV might not correspond with the best selection of (p, q) for the estimation
of Bp, q. We denote the scores of the FPCR-L1S estimator as B̂(𝜆),C

p̃,q .

2.4 Comparative study of estimators

A succinct simulation study is conducted for comparing the performance of the four estimators
previously described. We used the following common settings: the functional covariates {i}n

i=1
are centered and valued in [0, 1], the functional errors {i}n

i=1 are valued in [2, 3] (both inter-
vals were discretized in 101 equispaced grid points), the sample size is n= 100, and 1,000 Monte
Carlo replicates were considered. The simulation scenarios are collected in Table 1 and have the
following descriptions:

• CM. Based on the process used in Crambes and Mas (2013), where (s) =
∑50

j=1 𝜆j𝜀jΨj(s), 𝜀j ∼
 (0, 22), with 𝜆j = (𝜋2(j − 1

2
)2)−1 and Ψj(s) =

√
2 sin((j − 0.5)𝜋s), for each j≥ 1 and s∈ [0, 1].

• BM. Brownian motion with standard deviation equal to 0.15.
• IK. Based on the process used in Imaizumi and Kato (2018). Functional covariates are given by

(s) =
∑50

j=1 j−7∕4UjΨj(s), Uj ∼  (−
√

5,
√

5), with Ψ1(s) ≡ 1 and Ψj(s) =
√

2 cos(j𝜋s), for each
j≥ 1 and s∈ [0, 1]. Functional errors are given by (t) = ∑50

j=1 j−4∕5𝜀jΨj(t), 𝜀j ∼  (0, 1.52), for
each j≥ 1 and t ∈ [2, 3].

• GP. Gaussian process with covariance function Σ(s1, s2) = 62 exp(−|s1 − s2|∕0.2).
• OU. Ornstein–Uhlenbeck process with unitary drift and stationary standard deviation equal

to 0.35.

Table 2 shows the averaged errors ||𝛽 − 𝛽
(p,q)||H1⊗H2

of all estimators for p= 2, 5, 10, 25, 50 and
q= 1, 5, 10, with 𝜆 set as �̂�CV. We summarize next the conclusions:

• There is a weak dependency on q: parameters (p, q) do not play a symmetric role (Ramsay &
Silverman, 2005). Nonetheless, the influence of q is more prevalent in S2 and S3, inasmuch as
an amount of EV has still to be captured.

• When p is excessively large, errors skyrocket for FPCR and FPCR-L2, in contrast with FPCR-L1
and FPCR-L1S. This is clearly observed in S1 (low variability and a linear kernel), since the
model begins to become promptly overfitted (EVp= 2 > 0.99 and EVq= 1 = 0.98) and the effective
variable selection of FPCR-L1 and FPCR-L1S is clearly manifested ( ̄̃p∕p < 0.05 as p increases).

• S2 (high variability and an egg-carton-shape-like kernel) illustrates the situation in which the
functional samples are not properly represented with few FPC (EVp= 10 < 0.95). Even though
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T A B L E 2 Averaged L2 estimation errors

Scenario S1 S2 S3
q (EVq) 1 (98%) 5 (>99%) 10 (>99%) 1 (92%) 5 (>99%) 10 (>99%) 1 (38%) 5 (86%) 10 (93%)

EVp >99% 68.69% 96.66%

̄̃p 1.0 (0.13) 1.0 (0.13) 1.0 (0.13) 1.8 (0.40) 2.0 (0.14) 2.0 (0.14) 1.0 (0.00) 1.0 (0.00) 1.0 (0.00)

p= 2 FPCR 0.303 0.296 0.296 1.438 1.418 1.418 21.382 21.386 21.387

L1 0.216 0.216 0.216 1.438 1.425 1.425 21.385 21.385 21.385

L2 0.300 0.291 0.291 1.438 1.423 1.423 21.385 21.385 21.385

L1S 0.204 0.203 0.203 1.438 1.418 1.418 21.385 21.385 21.385

EVp >99% 87.77% 98.33%

̄̃p 1.1 (0.27) 1.1 (0.28) 1.1 (0.28) 4.8 (0.47) 4.4 (0.70) 4.4 (0.70) 3.1 (1.40) 1.5 (0.83) 1.5 (0.81)

p= 5 FPCR 2.461 2.660 2.670 1.418 1.303 1.304 10.204 6.696 6.738

L1 0.239 0.242 0.243 1.418 1.326 1.326 10.299 9.182 9.256

L2 2.161 2.316 2.324 1.418 1.308 1.308 10.417 10.221 10.335

L1S 0.308 0.323 0.323 1.418 1.307 1.307 10.230 6.711 6.716

EVp >99% 94.46% >99%

̄̃p 1.1 (0.45) 1.1 (0.42) 1.1 (0.42) 8.1 (1.28) 8.9 (1.00) 8.8 (1.00) 5.1 (2.52) 1.9 (1.32) 1.9 (1.28)

p= 10 FPCR 15.297 16.411 16.461 1.416 0.504 0.507 9.643 14.313 15.342

L1 0.404 0.407 0.408 1.416 0.547 0.548 8.981 8.782 8.868

L2 13.354 14.194 14.236 1.416 0.503 0.506 9.348 12.468 12.912

L1S 1.193 1.185 1.186 1.416 0.507 0.509 9.175 6.960 6.978

EVp >99% 98.37% >99%

̄̃p 1.2 (0.69) 1.2 (0.67) 1.2 (0.67) 11.5 (3.22) 11.7 (3.02) 11.7 (3.01) 5.9 (3.75) 2.0 (1.80) 1.70 (0.45)

p= 25 FPCR 164.917 176.286 176.757 1.419 1.271 1.291 36.794 111.324 119.420

L1 2.006 2.004 1.986 1.416 0.622 0.622 10.358 10.383 10.290

L2 142.442 150.485 150.857 1.419 1.222 1.241 26.367 52.843 53.747

L1S 9.549 10.505 10.435 1.417 0.936 0.943 16.720 15.679 15.310

EVp >99% 99% >99%

̄̃p 1.5 (1.74) 1.4 (1.52) 1.4 (1.48) 13.2 (5.50) 13.6 (5.10) 13.6 (5.11) 6.8 (5.30) 2.2 (2.57) 2.2 (2.60)

p= 50 FPCR 1231.590 1313.864 1317.221 1.445 3.596 3.654 220.034 680.661 729.409

L1 19.933 17.903 17.703 1.418 0.856 0.852 20.103 20.621 19.626

L2 1045.237 1098.301 1100.604 1.444 3.456 3.510 135.310 212.072 203.919

L1S 92.410 92.469 91.647 1.429 2.097 2.105 60.360 73.110 68.900

Note: The average number (sd in parentheses) of selected FPC with FPCR-L1 and FPCR-L1S is denoted as ̄̃p. Boldfaces denote
the errors that are not significantly larger than the smallest (on each block), according to a 95%-confidence paired t-test.
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errors are smaller than in S1 (overfitting is mitigated, ̄̃p∕p ≃ 0.25 as p increases), FPCR-L1
(mainly) and FPCR-L1S provide more precise estimations. FPCR slightly outperforms the rest
of estimators for small values of (p, q).

• A sensible choice of (p, q) for representing the functional samples might not be so for estimating
𝛽. This is illustrated in S3: even though and are smoother than in S2, ̄̃p is not much smaller,
since the first components are not informative. The number of selected FPC for FPCR-L1 and
FPCR-L1S is drastically reduced for large values of (p, q) ( ̄̃p∕p < 0.05, when p= 50 and q= 10),
since nonconsecutive FPC are allowed to be selected, removing the noise from estimating the
first null components.

All in all, FPCR-L1 outperforms FPCR-L1S, yet both performances are markedly better than
the FPCR and FPCR-L2 ones. Because of this and the key computational advantage the explicit
hat matrix (9) delivers, we will adopt FPCR-L1S as our reference estimator.

3 A GOF TEST FOR THE FLMFR

3.1 Derivation of the test statistic

Our aim is to verify whether the relation between the functional response and predictor can be
explained by the FLMFR in (6), that is, to test the composite null hypothesis

0 ∶ m ∈  = {⟨⟨⋅, 𝛽⟩⟩ ∶ 𝛽 ∈ H1 ⊗ H2}

against an unspecified alternative hypothesis 1 ∶ P(m ∉ ) > 0. Note that 0 is equivalent to
0 ∶ m(⋅) = ⟨⟨⋅, 𝛽⟩⟩, where the equality holds for some unknown 𝛽 ∈ H1 ⊗ H2.

The following lemmas give the characterization of 0 in terms of the one-dimensional
projections of the response and the predictor.

Lemma 1 (0 characterization). Let  and  be H1- and H2-valued random variables, respec-
tively, and 𝛽 ∈ H1 ⊗ H2. Then, the following statements are equivalent:

i. 0 holds, that is, m() = ⟨⟨ , 𝛽⟩⟩, ∀ ∈ H1.
ii. E[ − ⟨⟨ , 𝛽⟩⟩| = ] = 0, for almost every (a.e.)  ∈ H1.

iii. E[ − ⟨⟨ , 𝛽⟩⟩|⟨ , 𝛾⟩H1
= u] = 0, for a.e. u ∈ R, ∀𝛾 ∈ SH1

.
iv. E[⟨ − ⟨⟨ , 𝛽⟩⟩, 𝛾⟩H2

|⟨ , 𝛾⟩H1
= u] = 0 almost surely (a.s.), for a.e. u ∈ R and ∀𝛾 ∈

SH1
, 𝛾 ∈ SH2

.
v. E[⟨ − ⟨⟨ , 𝛽⟩⟩, 𝛾⟩H2

�{⟨ ,𝛾 ⟩H1≤u}] = 0 a.s., for a.e. u ∈ R and ∀𝛾 ∈ SH1
, 𝛾 ∈ SH2

.

Lemma 2 (0 characterization on finite-dimensional directions). Within the setting of Lemma
1, let {Ψj}∞j=1 and {Φk}∞k=1 be bases of H1 and H2, respectively. Then, the previous Statement v is
equivalent to

v′. E[⟨ − ⟨⟨ , 𝛽⟩⟩, 𝛾⟩H2
�{⟨ ,𝛾 ⟩H1≤u}] = 0, for a.e. u ∈ R, ∀𝛾 ∈ S

p−1
H1,{Ψj}∞j=1

, 𝛾 ∈ S
q−1
H2,{Φk}∞k=1

,

and for all p, q≥ 1.

Hence, 0 holds if and only if v′ is satisfied. In addition, the former Statements iii and iv are
equivalent to their iii’–iv’ analogues.



GARCÍA-PORTUGUÉS et al. 11

We use the characterization given by v in Lemma 1 to detect deviations from 0. We do so by
means of the empirical version (from an iid sample from (2)) of the doubly projected integrated
regression function in v, that is, the residual marked empirical process

Rn(u, 𝛾 , 𝛾 ) = 1√
n

n∑
i=1

⟨̂ i, 𝛾⟩H2
�{⟨ ,𝛾 ⟩H1≤u}, (10)

with u ∈ R, 𝛾 ∈ SH1
, 𝛾 ∈ SH2

and with residual marks ⟨̂ i, 𝛾⟩H2
= ⟨i − ⟨⟨i, 𝛽⟩⟩, 𝛾⟩H2

and
jumps ⟨i, 𝛾⟩H1

, i= 1, … , n. To measure how close the empirical process (10) is to zero, and
following the ideas in Escanciano (2006) and García-Portugués et al. (2014), we consider a
Cramér–von Mises (CvM) norm on the space Π = SH2

× SH1
× R, yielding what we term the

Projected Cramér–von Mises (PCvM) statistic:

PCvMn = ∫Π
[Rn(u, 𝛾 , 𝛾 )]2 Fn,𝛾 (du) 𝜔 (d𝛾 ) 𝜔 (d𝛾 ), (11)

where Fn,𝛾 is the empirical cumulative distribution function (ecdf) of {⟨i, 𝛾⟩H1
}n

i=1, and 𝜔
and 𝜔 are suitable measures on SH1

and SH2
, respectively. As will be seen in Section 3.2, a

key advantage of the PCvM statistic with respect to other possible norms for (10), such as the
Kolmogorov–Smirnov norm, is that it admits an explicit representation.

The infinite dimension of SH1
and SH2

makes the functional in (11) unworkable. A way of
circumventing this issue, motivated by Lemma 2, is to work with the finite-dimensional directions
𝛾
(p)
 and 𝛾

(q)
 expressed on the bases {Ψj}p

j=1 and {Φk}q
k=1, respectively. For the sake of simplicity,

we assume that these bases are orthonormal from now on; see Remark 3 for nonorthogonal bases.
Then, the (p, q)-truncated version of (10) is

Rn,p,q(u, 𝛾 (p) , 𝛾
(q)
 ) = 1√

n

n∑
i=1

⟨̂ (q)
i , 𝛾

(q)
 ⟩H2

�{⟨ (p)
i ,𝛾

(p)
 ⟩H1≤u} =

1√
n

n∑
i=1

ê′
i,qhq�{x′

i,pgp≤u},

where u ∈ R, gp ∈ Sp−1,hq ∈ Sq−1 and ê′
i,q represents the ith row of the n× q matrix of resid-

ual coefficients Êq, gp and hq are the coefficients of 𝛾 (p) and 𝛾
(q)
 , respectively, and xi, p are the

coefficients of  (p)
i . Therefore, the (p, q)-truncated version of (11) is

PCvMn,p,q = ∫Π(p,q)
[Rn,p,q(u, 𝛾 (p) , 𝛾

(q)
 )]2 Fn,𝛾 (p)

(du) 𝜔 (d𝛾 (p) ) 𝜔 (d𝛾 (q) ), (12)

where Π(p,q) = S
q−1
H2,{Φk}∞k=1

× S
p−1
H1,{Ψj}∞j=1

× R.

3.2 Computable form of the statistic

The statistic in (12) is now conveniently rewritten for its implementation. First, following Escan-
ciano (2006) and García-Portugués et al. (2014), let us assume that 𝜔 and 𝜔 in (12) represent
uniform measures on S

p−1
H1,{Ψj}∞j=1

and S
q−1
H2,{Φk}∞k=1

, respectively. Second, recall that since both bases

are orthonormal, from the transformation defined in (1), we have
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PCvMn,p,q = ∫
Sq−1×Sp−1×R

[Rn,p,q(u, gp,hq)]2 Fn,gp
(du) dgp dhq, (13)

where Rn,p,q(u, gp,hq) ≡ Rn,p,q(u, 𝛾 (p) , 𝛾
(q)
 ). Using some simple algebra, we obtain

PCvMn,p,q = ∫
Sq−1×Sp−1×R

1
n

[ n∑
i=1

ê′
i,qhq�{x′

i,pgp≤u}

]2

Fn,gp
(du) dgp dhq

= 1
n

n∑
i=1

n∑
j=1

[
∫

Sp−1×R

�{x′
i,pgp≤u}�{x′

j,pgp≤u} Fn,gp
(du) dgp

]
∫

Sq−1
(ê′

i,qhq)(ê′
j,qhq) dhq

= 1
n2

n∑
i=1

[ n∑
j=1

n∑
r=1∫Sp−1

�{(xi,p−xr,p)′gp≤0, (xj,p−xr,p)′gp≤0} dgp

]
Eij

= 1
n2

n∑
i=1

n∑
j=1

n∑
r=1

[
∫Sijr

dgp

]
Eij, (14)

where we denote Sijr ∶= {z ∈ Sp−1 ∶ 𝜋∕2 ≤ ∡(xi,p − xr,p, z) ≤ 3𝜋∕2, 𝜋∕2 ≤ ∡(xj,p − xr,p, z) ≤
3𝜋∕2} (∡(x, y) stands for the angle between x, y ∈ Rp) and Eij ∶= ∫

Sq−1(ê′
i,qhq)(ê′

j,qhq) dhq.
The terms ∫Sijr

dgp =∶ Aijr are the same as the ones given in García-Portugués et al. (2014)
and they represent surface areas of particular spherical regions, that can either be the whole
sphere Sp−1 (xi, p = xj, p = xr, p), a hemisphere of Sp−1 (if either xi, p = xj, p, xj, p = xr, p or xi, p = xr, p),
or a spherical wedge with solid angle

𝜋 − cos−1
( (xi,p − xr,p)′(xj,p − xr,p)||xi,p − xr,p|| ⋅ ||xj,p − xr,p||

)
. (15)

Therefore, since the surface of Sp−1 is equal to 2𝜋p∕2∕Γ(p∕2), being Γ(⋅) the Gamma function,
from Escanciano (2006) it follows that

Aijr = A(∡)
ijr

𝜋p∕2−1

Γ(p∕2)
, A(∡)

ijr ∶=

⎧⎪⎪⎨⎪⎪⎩

2𝜋, if xi,p = xj,p = xr,p,

𝜋, if xi,p ≠ xj,p and
xi,p = xr,p or xj,p = xr,p,

(15), otherwise.

(16)

The term Eij can be dealt using the next auxiliary lemma regarding integration on the
Euclidean sphere, yielding Eij = 2𝜋q∕2∕(qΓ(q∕2))ê′

i,qêj,q, for each i, j= 1, … , n.

Lemma 3. For any vectors x, y ∈ Rq, ∫
Sq−1(x′𝝎)(y′𝝎) d𝝎 = 2𝜋q∕2∕(qΓ(q∕2))x′y.

Substituting these terms into (14), we get an easily computable form of the statistic:

PCvMn,p,q = 1
n2

n∑
i=1

n∑
j=1

n∑
r=1

Aijr
2𝜋q∕2

qΓ(q∕2)
ê′

i,qêj,q = 1
n2

2𝜋p∕2+q∕2−1

qΓ(p∕2)Γ(q∕2)
Tr[Ê′

qA•Êq], (17)

where Tr(⋅) denotes the trace operator and the elements of the symmetric matrix A• are defined
as (A•)ij ∶=

∑n
r=1 Aijr, for i, j= 1, … , n.
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Remark 1 (Generalization of the GoF test statistic for the FLMSR). If H2 = R, identifiable with
the subspace of L2([c, d]) of constant functions, the FLMSR arises as a particular case of the
FLMFR. This is reflected in the statistic (17) which, if q= 1, yields the PCvM statistic for the
FLMSR given in García-Portugués et al. (2014) as a particular case.

Remark 2 (Alternative interpretation of PCvMn, p, q). The statistic (17) can be written as

PCvMn,p,q = 1
n2

2𝜋p∕2+q∕2−1

qΓ(p∕2)Γ(q∕2)

q∑
k=1

||(ê1,k, … , ên,k)||A• ,

where ̂ (q)
i =

∑q
k=1 êi,kΦk, i= 1, … , n, and ||v||A• ∶= (v′A•v)1∕2 is a norm (see Lemma 4) in Rn

induced by the symmetric matrix A•. Therefore, the statistic is a sum, across the q dimensions
of the truncated response, of the A•-weighted norms of the coefficients of the functional errors
on {Φk}q

k=1. If this basis is nonorthonormal, then a similar interpretation can be obtained (see
Remark 3).

Observe that || ⋅ ||A• is trivially a seminorm: since PCvMn, p, q is nonnegative, then A• must be
positive semidefinite. That A• is actually a norm follows from the next lemma.

Lemma 4. Assume that the functional sample {i}n
i=1 has pairwise distinct coefficients {xi,p}n

i=1 on
an arbitrary p-truncated basis {Ψj}p

j=1 of H1. Then, for any sample size n≥ 1, the n×n matrix A• is
positive definite.

Remark 3 (Statistic for general functional bases). The statistic in (13) can be expressed in terms
of nonorthogonal functional bases as follows:

|Pp||Qq|PCvMn,p,q = ∫
Sq−1×Sp−1×R

[Rn,p,q(u,P−1
p gp,Q

−1
q hq)]2 Fn,P−1

p gp
(du) dgp dhq

= ∫
Sq−1×Sp−1×R

1
n

[ n∑
i=1

ê′
i,qQ′

qhq�{x′
i,pP′

pgp≤u}

]2

Fn,P−1
p gp

(du) dgp dhq,

where 𝚽 = Q′
qQq is the Cholesky decomposition of 𝚽 and the second equality stems from⟨ (p)

i , 𝛾
(p)
 ⟩H1

= x′
i,p𝚿gp and ⟨̂ (q)

i , 𝛾
(q)
 ⟩H2

= ê′
i,q𝚽hq. Then, following the developments preceding

(17), it can be shown that

PCvMn,p,q = 1
n2

2𝜋p∕2+q∕2−1|Pp||Qq|qΓ(p∕2)Γ(q∕2)
Tr[(ÊqQq)′A•(ÊqQq)], (18)

where A• is based on the coefficients of  (p)
1 , … , (p)

n on the nonorthonormal basis {Ψj}p
j=1.

Despite the general derivation of the PCvM statistic, we will focus on its application for the
data-driven FPC bases {Ψ̂j}n

j=1 and {Φ̂k}n
k=1.

3.3 Testing in practice and bootstrap resampling

We calibrate the null distribution of the statistic PCvMn, p, q in (18) by a wild bootstrap on the
residuals. This methodology is consistent in the finite dimensional case, as shown by Stute,
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González-Manteiga, and Presedo-Quindimil (1998), and well adapted for heteroscedastic scenar-
ios.

The bootstrap resampling is detailed within the next algorithm. It describes how to perform
our GoF test proposal in practice using FPCR-L1S, as this estimator combines the performance of
FPCR-L1 and the computational expediency of FPCR. Adaptations to other estimators described
in Section 2.3 are straightforward (but see Remark 4).

Algorithm 1 . (Testing in practice). Let {(i,i)}n
i=1 be an iid sample. The GoF test for the FLMFR

proceeds as follows:

1. Center the sample and compute the FPC of {i}n
i=1 and {i}n

i=1.
2. Select p and q as the minimum number of FPC required for attaining a certain proportion of EV

(e.g., such that EVp =EVq = 0.99).
3. Compute the coefficients (scores) of {i}n

i=1 and {i}n
i=1 on the p- and q-truncated FPC bases,

resulting the matrices Xp and Yq.
4. Compute the FPCR-L1S estimator B̂(𝜆),C

p̃,q of 𝛽 as described in Section 2.3. This automatically
selects a subset of p̃ out of p FPC coefficients, depending on 𝜆.

5. Obtain the residuals êi,q = Yi,q − Xi,pB̂(𝜆),C
p̃,q , i= 1, … , n, and compute with them the statistic

PCvMn,p̃,q in (17).
6. Perform the bootstrap resampling. For b= 1, … , B:

i. Simulate independent zero-mean and unit-variance random variables {V∗b
i }n

i=1. For example,
sample V∗b such that P[V∗b = (1 ∓

√
5)∕2] = (5 ±

√
5)∕10.

ii. Set the bootstrap errors as e∗b
i,q ∶= êi,qV∗b

i , i= 1, … , n.

iii. Set the uncentered bootstrapped responses Y∗b,u
i,q ∶= Xi,p̃B̂(𝜆),C

p̃,q + e∗b
i,q, and center them to imi-

tate the original FPC scores: Y∗b
i,q ∶= Y∗b,u

i,q − Y∗b,u
q , i= 1, … , n.

iv. From the bootstrap sample {(Xi,p̃,Y∗b
i,q)}

n
i=1, compute the estimator B̂∗b

p̃,q of B̂(𝜆),C
p̃,q .

v. Obtain the bootstrap residuals ê∗b
i,q = Y∗b

i,q − Xi,p̃B̂∗b
p̃,q, i= 1, … , n, and compute with them the

bootstrapped statistic PCvM∗b
n,p̃,q from (17).

7. Estimate the p-value by Monte Carlo as usual by #{PCvMn,p̃,q ≤ PCvM∗b
n,p̃,q}∕B.

Remark 4 (Computational tricks). Since A• depends exclusively on the covariate sample, it
only needs to be computed once in the testing procedure. In addition, as the wild bootstrap only
affects the response, Steps iv and v can be efficiently implemented using the hat matrix (9),
avoiding costly refittings on each bootstrap iteration. Indeed, Ê∗b

q = Y∗b
q − Ŷ∗b

q = (Iq − H(𝜆)
C )Y∗b

q ,
Ŷ∗b

q = Xp̃B̂∗b
p̃,q. The same comment holds for FPCR-L2 and FPCR by virtue of H(𝜆) (in that case,

p̃ = p), although not for FPCR-L1 due to its lack of an explicit hat matrix. The GoF test using
FPCR-L1 thus requires B+ 1 LASSO fits.

Remark 5 (Scores vs. functional resampling). The above wild bootstrap performs the resampling
on the scores of the residuals in the q-truncated FPC basis {Φ̂k}q

k=1, as from Step 4 onward there
is no further mention to the functional nature of the sample. This view could be achieved with
extra notation, as the bootstrap errors in Step ii can be written as

 (q)∗b
i ∶=

q∑
k=1

(ei,kV∗b
i )Φ̂k, ̂ (q)

i =
q∑

k=1
ei,kΦ̂k.
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This exposes a subtle point: Why not bootstrapping the functional residuals ̂ i = i − ̂ (q)
i as

∗b
i ∶= ̂ iV∗b

i ? This would allow to obtain truly functional bootstrap responses {∗b
i }n

i=1, yet at
expenses of the overhead of recomputing their FPC for each bootstrap replicate. In our experi-
ments, this latter approach did not provide a significant improvement on the calibration of the
test over the scores resampling, hence it was discarded in favor of the latter.

Remark 6 (Selection of the penalty parameter). A possible data-driven selection for 𝜆 in Step
4 is �̂�CV. However, we found by simulations that the so-called one standard error rule �̂�1SE
(see Friedman et al. (2010)) improved the stability of the calibration of PCvMn,p̃,q under 0.
This is coherent with the folklore in smoothing-based GoF tests, where the optimal smooth-
ing parameter for estimating the regression function m is often not the most appropriate for
conducting the test; instead, an oversmoothed estimate of m (that biases the estimation in
exchange for a variance reduction, precisely as �̂�1SE does) is desirable for a better calibration of the
statistic.

Remark 7 (FPCR-L1 variable selection). LASSO is a consistent variable selector if the predictors
are uncorrelated (Zhao & Yu, 2006). Hence, this result supports the adequateness for combin-
ing FPCR (instead of using nonorthogonal bases) with LASSO variable-selection. It also supports
ignoring in Algorithm 1 the bootstrapping of the variable selection uncertainty. Indeed, moti-
vated by a comment of one referee, we ran a small simulation study with a modified version
of Algorithm 1 that incorporated in Step 6 a bootstrap variable selection using �̂�

∗b
1SE, obtaining

very similar powers to the analogs of Tables 8-10 for FPCR-L1S (�̂�1SE). Clearly, this modification
increases the computational requirements by orders of magnitude, which is impractical. In this
simulation it was also evidenced that variable selection based on �̂�CV seems to be inconsistent
(which may be explained by Shao (1993)’s result), while variable selection based on �̂�1SE seems to
be behave consistently.

So far we have only discussed the GoF test for the FLMFR. However, simple adaptations allow
to test also the simple hypothesis 0 ∶ m(⋅) = ⟨⟨⋅, 𝛽0⟩⟩, where 𝛽0 ∈ H1 ⊗ H2 now is specified.
Algorithm 1 can be straightforwardly adapted. First, replace Step 4 by

4′. Compute p̃ as in Step 4. Obtain B0
p̃,q = (b0

ij)ij, the p̃ × q matrix of 𝛽0 FPC coefficients.

Then, the bootstrap procedure is subsequently adjusted by simply ignoring the estimation
steps, that is, by replacing both B̂(𝜆),C

p̃,q and B̂∗b
p̃,q by B0

p̃,q.
Algorithm 1 and its variants (simple hypothesis; FPCR, FPCR-L2, and FPCR-L1 estima-

tors; functional residual resampling) are implemented in the companion R package goffda
(García-Portugués & Álvarez-Liébana, 2020). The critical parts of the test, such as the com-
putation of the A• matrix and the computation of the PCvM statistic (whose complexity is
(q(n3 − n2)∕2)), are implemented in C++ for the sake of efficiency.

4 SIMULATION STUDY

The finite sample behavior of the PCvM test is now illustrated via a comparative study with
the available significance tests (Section 4.1) and a simulation study for the composite hypothe-
sis (Section 4.2). We employed the scenarios already described in Table 1 and used the following
common settings: discretization of functional samples in 101 equispaced grid points along the
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domains, sample sizes n= 50, 100, 250, B= 1, 000, and 1,000 Monte Carlo replicates. The PCvM
test was run using Algorithm 1 with EVp =EVq = 0.99.

The PCvM test was computed using both FPCR and FPCR-L1S, for showing how the overfit-
ting inherent to the former may affect the GoF test. In Section 4.2, FPCR-L1S is employed with
both �̂�CV and �̂�1SE for the purpose of illustrating the discussion in Remark 6. When testing for sig-
nificance, the conclusions reached with both penalty parameters were similar (since an estimator
of 𝛽 is not required), so the results are only reported for �̂�1SE. The search for �̂�CV and �̂�1SE was
done among a sequence in [10−3, 102] and, if the minimizer of the objective function was found
at its extremes, the interval was expanded.

4.1 Simple hypothesis

We compare in this section the significance tests by Kokoszka et al. (2008), Patilea et al. (2016b),
and Lee et al. (2020) (henceforth abbreviated as KMSZ, PSS, and LZS, respectively) with our PCvM
test for the no effects hypothesis

0,NE ∶ m(⋅) = ⟨⟨⋅, 𝛽0⟩⟩, 𝛽0 ≡ 0.

Both the KMSZ and PSS tests are based on the FPC of the predictor and response, that are
truncated such that EVp =EVq = 0.99. The KMSZ statistic is asymptotically 𝜒2

pq distributed under
0,NE, this being the distribution employed to calibrate the test. We ran the PSS test as imple-
mented in the fdapss (Patilea, Sánchez-Sellero, & Saumard, 2016a) package, with a grid of 50
points for each one-dimensional optimization and the bandwidth chosen as h=n−2/9, as sug-
gested in Patilea et al. (2016b). A bug in pss.test when p= 1 invalidated up to 8.5% of the
Monte Carlo replicates, depending on the scenario.

The LZS test estimates the functional martingale difference divergence that characterizes
the conditional mean dependence of  and  . Hence, unlike the previous competitors and our
approach, it does not require from an FPC-based dimension reduction.

We assume here that H1 = H2 = L2([0, 1]). As reflected in Table 3, four kind of deviations from
0,NE were generated: FLMFR, concurrent model (degenerated FLMFR, denoted as FLCFR), and
two nonlinear alternatives. The empirical rejection rates are given in Tables 4-6. They contain
only the results of the FPCR-based PCvM test since the FPCR-L1S version gave almost identical
rejection rates. Their analysis reveals the following insights:

• Regarding the calibration, the PCvM and LZS tests are the only without repeated miscalibra-
tions in any scenario: an overrejection happens in S2 (0,NE in Table 5) for the PSS test, while
the KMSZ test has difficulties in S2 and S3 (0,NE in Tables 5 and 6).

• Concerning linear alternatives (FLMFR and concurrent), the LZS and KMSZ tests seem to be
the most powerful in S1, but the KMSZ test is notably the most powerful approach in S2 under
the FLMFR alternative, an outcome somehow expected given the test nature. However, the
KMSZ test may fail under linear alternatives for sparse scenarios (1,FR and 1,C in Table 6),
providing empirical powers smaller than the nominal level. The behavior is worse for the LZS
test, even under larger deviations from 0,NE. A possible explanation is that the noise intro-
duced with the null FPCs is not removed due to the lack of dimension reduction in the test.
With respect to the comparison of the PCvM and PSS tests, the former is more powerful than
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T A B L E 3 Summary of null and alternative hypotheses

Notation Model (𝜹1, 𝜹2, 𝜹3)
0,NE (no effects) (t) = (t) None

S1: (0.035, 0.08, 0.15)

h
1,FR (FLMFR) (t) = 𝛿h⟨⟨ , 𝛽⟩⟩ + (t) S2: (0.01, 0.02, 0.03)

S3: (1, 1.3, 1.6)

S1: (0.025, 0.05, 0.15)

h
1,C (FLCFR) (t) = 𝛿h𝛽 j(t)(t) + (t), j = 1, 2, 3 S2: (0.2, 0.6, 1)

S3: (0.01, 0.025, 0.05)

h
1,NLQ (t) = 𝛿hΔ()(t) + (t) S1: (0.025, 0.075, 0.15)

(nonlinear, quadratic) Δ()(t) = 2
(

a + (t − c) b−a
d−c

)
− 1 S2: (0.02, 0.04, 0.1)

h
1,NLT (t) = 𝛿hΔ()(t) + (t) S3: (0.2, 0.35, 0.55)

(nonlinear, trigonometric) Δ()(t) = (sin(2𝜋t) − cos(2𝜋t))||||2
H1

Note: Concurrent models are given by functions 𝛽1(t) =
√| sin(𝜋t) − cos(𝜋t)| (S1), 𝛽2(t) = log(t − a + 0.5) (S2), and

𝛽3(t) = (t − 0.5)3 (S3).

the latter under concurrent models (1,C in Tables 4–6) in all scenarios and for all sample sizes.
In the case of FLMFR alternatives, this is also the case (unless for minor exceptions) for S1
and S2 (1,FR in Tables 4 and 5). In S3, the PSS test attains perfect empirical power, even for
n= 50 and the smallest deviation from the null hypothesis, manifesting a sharp difference with
respect to its behavior for S2 (almost blind for linear alternatives).

• Concerning nonlinear alternatives, as expected, KMSZ exhibits a poor performance detect-
ing them, except for S2 under 1,NLQ. The PSS, LZS, and PCvM tests correctly detect all the
nonlinear alternatives, the former being on overall more powerful in S3, the second one in S1
and S2.

We report some illustrative average running times of the four tests when n= 100 and
B= 1, 000. We do so only for S3, whose running times for all the tests are approximately between
S1 and S2, and under 0,NE and 3

1,FR (similar results were obtained under other alternatives).
For the KMSZ test (does not requires bootstrap calibration), the average running times (in sec-
onds) were 0.0086 s (0,NE) and 0.0085 s (3

1,FR). For the PSS and LZS tests, 24.6 and 17.5 s, and
0.5 and 0.4 s, respectively. For the PCvM test (employs the same estimator as PSS), 0.5 and 0.2 s.
The comparison was done in a core with 1.8 GHz.

As a conclusion, in the considered scenarios, the PCvM test properly calibrates 0,NE, is com-
petitive against the competing tests for all the alternatives (eventually being the most powerful
in certain of them), and matches or improves the omnibus LZS and PSS tests in computational
expediency.

4.2 Composite hypothesis

We consider now H1 = L2([0, 1]) and H2 = L2([2, 3]) and two different null (linear) hypotheses:
no effects model and FLMFR. The same two nonlinear deviations from the linearity, weighted by
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T A B L E 4 Scenario S1

KMSZ PSS LZS PCvM
n 50 100 250 50 100 250 50 100 250 50 100 250

0,NE 0.053 0.055 0.057 0.049 0.047 0.048 0.048 0.044 0.049 0.042 0.034 0.050

1
1,FR 0.083 0.178 0.495 0.067 0.074 0.160 0.339 0.567 0.943 0.087 0.128 0.282

2
1,FR 0.384 0.836 1.000 0.177 0.316 0.718 0.916 0.998 1.000 0.292 0.516 0.923

3
1,FR 0.955 1.000 1.000 0.551 0.885 0.997 1.000 1.000 1.000 0.718 0.973 1.000

1
1,C 0.146 0.378 0.890 0.066 0.069 0.152 0.339 0.576 0.946 0.082 0.121 0.272

2
1,C 0.527 0.936 1.000 0.113 0.195 0.472 0.822 0.989 1.000 0.171 0.340 0.778

3
1,C 0.976 1.000 1.000 0.708 0.969 1.000 1.000 1.000 1.000 0.511 0.864 1.000

1
1,NLQ 0.050 0.065 0.070 0.052 0.061 0.116 0.113 0.218 0.677 0.053 0.045 0.074

2
1,NLQ 0.125 0.171 0.168 0.143 0.362 0.876 0.581 0.970 1.000 0.086 0.171 0.686

3
1,NLQ 0.246 0.274 0.255 0.553 0.959 1.000 0.876 1.000 1.000 0.233 0.721 1.000

1
1,NLT 0.100 0.135 0.129 0.050 0.050 0.059 0.093 0.133 0.502 0.047 0.039 0.064

2
1,NLT 0.194 0.217 0.196 0.068 0.132 0.791 0.632 0.987 1.000 0.080 0.107 0.483

3
1,NLT 0.217 0.237 0.216 0.446 0.949 1.000 0.932 1.000 1.000 0.245 0.743 1.000

Note: Empirical rejection rates for the KMSZ, PSS, LZS, and PCvM tests for n= 50, 100, 250 and the deviations in Table 3.
Under 0,NE, the rejection rates are boldfaced if they lie in the 95%-confidence interval of the nominal level, 0.05. Under
1, boldfaces denote the empirical powers that are not significantly smaller than the largest, for each deviation and
sample size, according to a 95%-confidence paired t test.

different intensity parameters, are again considered as alternatives. Table 7 summarizes all the
hypothesis tested. The conclusions from the results collected in Tables 8–10 are the following:

• As argued in Remark 6, for the PCvM test based in FPCR-L1S, �̂�1SE provides better calibration of
the null hypothesis than �̂�CV. The latter statistic encounters serious difficulties to be calibrated,
specially in S2–S3 (Tables 9 and 10) and under 0,NE.

• The PCvM test based on FPCR overrejects under irregular/sparse scenarios like S2 and S3
(0,NE and 0,FR in Table 9; 0,FR in Table 10). In the case of S2, this phenomena likely arises
from the overfitting (already discussed in Section 2.4) associated with the FPCR estimator. For
S3, the first scores for estimating 𝛽 are null coefficients, and therefore, the information com-
ing from the FPC (incorrectly) suggests that 0,FR is related to a null surface (i.e., FPC suggest
that 0,NE holds) and so rejection of 0,FR happens. This issue was the main motivation for
developing FPCR-L1S and use it as a flexible estimator of 𝛽 within the PCvM test.

• With respect to the power, the referred overrejection of the FPCR-based PCvM test unfairly
provides greater empirical powers to this test with respect to FPCR-L1S based tests. Con-
cerning the use of �̂�CV, only marginal advantages are provided by �̂�CV in specific situa-
tions. Finally, as expected, empirical powers tends to one as n and the deviation index h
increase.

As before, we report some illustrative average timings for S3 under the same conditions. For
the PCvM-FPCR test, the timings were 0.8 s (0,FR) and 0.8 s (1,NLQ). The PCvM-FPCR-L1S
(�̂�1SE) test took 13.1 and 11.9 s, and the �̂�CV variant, 11.5 and 8.8 s.
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T A B L E 5 Scenario S2

KMSZ PSS LZS PCvM
n 50 100 250 50 100 250 50 100 250 50 100 250

0,NE 0.006 0.033 0.043 0.093 0.070 0.068 0.054 0.048 0.047 0.030 0.036 0.045

1
1,FR 0.025 0.201 0.932 0.091 0.078 0.064 0.064 0.064 0.131 0.036 0.056 0.107

2
1,FR 0.058 0.521 1.000 0.094 0.078 0.057 0.125 0.259 0.952 0.065 0.168 0.900

3
1,FR 0.083 0.657 1.000 0.095 0.075 0.058 0.342 0.846 1.000 0.180 0.729 1.000

1
1,C 0.023 0.112 0.567 0.087 0.085 0.059 0.868 0.999 1.000 0.032 0.056 0.104

2
1,C 0.120 0.874 1.000 0.082 0.092 0.073 1.000 1.000 1.000 0.059 0.176 0.655

3
1,C 0.955 1.000 1.000 0.093 0.070 0.070 1.000 1.000 1.000 0.381 0.898 1.000

1
1,NLQ 0.050 0.174 0.305 0.080 0.072 0.156 0.102 0.167 0.626 0.043 0.082 0.282

2
1,NLQ 0.083 0.337 0.552 0.077 0.196 0.894 0.225 0.648 1.000 0.060 0.227 0.975

3
1,NLQ 0.084 0.420 0.689 0.250 0.983 1.000 0.502 0.989 1.000 0.086 0.532 1.000

1
1,NLT 0.007 0.039 0.041 0.074 0.083 0.047 0.098 0.145 0.486 0.039 0.067 0.190

2
1,NLT 0.010 0.044 0.046 0.067 0.131 0.767 0.253 0.655 1.000 0.069 0.244 0.961

3
1,NLT 0.010 0.042 0.067 0.385 0.998 1.000 0.625 0.997 1.000 0.180 0.758 1.000

Note: Empirical rejection rates for the KMSZ, PSS, LZS, and PCvM tests for n= 50, 100, 250 and the deviations in Table 3.
Under 0,NE, the rejection rates are boldfaced if they lie in the 95%-confidence interval of the nominal level, 0.05. Under
1, boldfaces denote the empirical powers that are not significantly smaller than the largest, for each deviation and
sample size, according to a 95%-confidence paired t test.

As a conclusion, the obtained empirical results evidence that the PCvM test based on
FPCR-L1S with 𝜆 selected by �̂�1SE is a well-calibrated, flexible, and computationally efficient test
that is consistent against a wide class of alternatives to the FLMFR.

5 REAL DATA APPLICATION

We apply our GoF test to a real data set with functional predictor and response (see Figure 1),
openly accessible as the object aemet_temp from the goffda package. Another application is
given in the SI for the data set considered in Benatia et al. (2017). Along both applications, we
used B= 10, 000 bootstrap replicates to calibrate all the bootstrap-based tests and the PCvM test
was run using Algorithm 1 with FPCR-L1S, EVp =EVq = 0.99, and �̂�1SE. For both applications,
the same qualitative results were obtained with FPCR or FPCR-L2.

The “AEMET temperatures data set” was constructed from the raw daily temperatures, along
the span 1974–2013, of n= 73 weather stations from the Meteorological State Agency of Spain
(AEMET). We considered a partition of this data set in two 20-year periods, 1974–1993 and
1994–2013, and computed the daily average temperature in each period. The aim of this par-
tition is to explain the temperatures in the latter period () from the ones in the former ().
Therefore, the response and predictor are valued in H1 = H2 = L2([0,365]). The functional obser-
vations are recorded in 365 equispaced grid points in the interval [0.5, 364.5] and are significantly
rougher than in the previous application since no presmoothing is applied. The selected stations
are the same as in the aemet data set of the fda.usc package (Febrero-Bande & Oviedo de la
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T A B L E 6 Scenario S3

KMSZ PSS LZS PCvM
n 50 100 250 50 100 250 50 100 250 50 100 250

0,NE 0.006 0.036 0.026 0.046 0.071 0.052 0.054 0.049 0.040 0.047 0.041 0.037

1
1,FR 0.010 0.041 0.052 1.000 1.000 1.000 0.058 0.073 0.107 0.055 0.108 0.398

2
1,FR 0.014 0.040 0.056 1.000 1.000 1.000 0.063 0.079 0.134 0.062 0.119 0.582

3
1,FR 0.027 0.044 0.058 1.000 1.000 1.000 0.057 0.076 0.135 0.067 0.136 0.675

1
1,C 0.007 0.037 0.047 0.057 0.099 0.110 0.054 0.049 0.040 0.069 0.120 0.217

2
1,C 0.008 0.057 0.185 0.141 0.293 0.589 0.054 0.049 0.040 0.252 0.503 0.891

3
1,C 0.020 0.234 0.870 0.459 0.781 0.998 0.055 0.049 0.040 0.756 0.979 1.000

1
1,NLQ 0.004 0.027 0.031 0.061 0.132 0.374 0.083 0.100 0.261 0.059 0.080 0.197

2
1,NLQ 0.006 0.030 0.033 0.120 0.408 0.956 0.139 0.296 0.897 0.096 0.200 0.824

3
1,NLQ 0.007 0.035 0.036 0.349 0.903 1.000 0.309 0.785 1.000 0.201 0.627 1.000

1
1,NLT 0.005 0.028 0.034 0.054 0.082 0.178 0.073 0.082 0.199 0.052 0.070 0.156

2
1,NLT 0.005 0.028 0.033 0.077 0.252 0.986 0.131 0.253 0.940 0.082 0.177 0.816

3
1,NLT 0.008 0.032 0.030 0.345 0.973 1.000 0.344 0.873 1.000 0.207 0.700 1.000

Note: Empirical rejection rates for the KMSZ, PSS, LZS, and PCvM tests for n= 50, 100, 250 and the deviations in Table 3.
Under 0,NE, the rejection rates are boldfaced if they lie in the 95%-confidence interval of the nominal level, 0.05. Under
1, boldfaces denote the empirical powers that are not significantly smaller than the largest, for each deviation and
sample size, according to a 95%-confidence paired t test.

T A B L E 7 Summary of null and alternative hypotheses, for S1–S3

Notation Model (𝜹1, 𝜹2, 𝜹3)

0,NE (no effects) (t) = (t) None

0,FR (FLMFR) (t) = 1
2
⟨⟨ , 𝛽⟩⟩ + (t)

S1: (0.02, 0.04, 0.1)

h
1,NLQ (nonlinear,

quadratic)
(t) = ⟨⟨ , 𝛽⟩⟩ + 𝛿hΔ()(t) + (t)

Δ()(t) =
(2(a + (t − c) b−a

d−c
) − 1

) S2: (0.01, 0.02, 0.03)

S3: (0.02, 0.15, 0.5)

h
1,NLT (nonlinear,
trigonometric)

(t) = ⟨⟨ , 𝛽⟩⟩ + 𝛿hΔ()(t) + (t)
Δ()(t) = (sin(2𝜋t) − cos(2𝜋t))||||2

H1

S1: (0.03, 0.05, 0.1)

S2: (0.035, 0.045, 0.055)

S3: (0.025, 0.2, 0.45)

Fuente, 2012) and were selected over a larger set of stations due to their consistent records and
permanent locations over the 40-year period.

The PCvM test based on the data-driven p̃ = 4 and q= 3 yielded p-value= .2538 when testing
the GoF of the FLMFR. Hence, the sample shows no significant evidences against the FLMFR
for any sensible significance level. In addition, 𝛽 in Figure 2 (right) reveals several interesting
insights: (i) the FLMFR mainly focuses on capturing positive correlation (positive values of 𝛽;
marked in red) within a ±90-days band (in dashed lines) about a given time of the year, effectively
corresponding to half a year; (ii) the predominance of positive values, together with the fact that
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T A B L E 8 Scenario S1

FPCR FPCR-L1S (�̂�1SE) FPCR-L1S (�̂�CV)
n 50 100 250 50 100 250 50 100 250

0,NE 0.041 0.042 0.049 0.043 0.031 0.050 0.010 0.014 0.013

0,FR 0.042 0.043 0.050 0.028 0.046 0.045 0.030 0.037 0.042

1
1,NLQ 0.063 0.091 0.177 0.045 0.092 0.179 0.046 0.080 0.166

2
1,NLQ 0.142 0.271 0.626 0.122 0.254 0.620 0.115 0.244 0.605

3
1,NLQ 0.596 0.929 1.000 0.566 0.917 1.000 0.568 0.919 1.000

1
1,NLT 0.048 0.057 0.115 0.035 0.059 0.120 0.037 0.050 0.106

2
1,NLT 0.087 0.166 0.642 0.068 0.155 0.623 0.068 0.141 0.608

3
1,NLT 0.555 0.953 1.000 0.496 0.943 1.000 0.505 0.941 1.000

Note: Empirical rejection rates for the PCvM test, based on FPCR and FPCR-L1S, for n= 50, 100, 250. Under 0,NE

and 0,FR, the rejection rates are boldfaced if they lie in the 95%-confidence interval of the nominal level, 0.05.

T A B L E 9 Scenario S2

FPCR FPCR-L1S (�̂�1SE) FPCR-L1S (�̂�CV)
n 50 100 250 50 100 250 50 100 250

0,NE 1.000 0.949 0.364 0.026 0.036 0.043 0.014 0.020 0.014

0,FR 0.997 0.876 0.308 0.091 0.047 0.037 0.298 0.109 0.047

1
1,NLQ 0.978 0.825 0.648 0.101 0.125 0.380 0.351 0.250 0.390

2
1,NLQ 0.993 0.962 0.990 0.235 0.463 0.929 0.504 0.593 0.934

3
1,NLQ 0.999 1.000 1.000 0.585 0.910 1.000 0.844 0.969 1.000

1
1,NLT 0.979 0.772 0.390 0.120 0.214 0.313 0.438 0.277 0.238

2
1,NLT 0.996 0.970 0.991 0.650 0.891 0.985 0.772 0.899 0.985

3
1,NLT 1.000 1.000 1.000 0.910 0.975 1.000 0.967 0.995 1.000

Note: Empirical rejection rates for the PCvM test, based on FPCR and FPCR-L1S, for n= 50, 100, 250. Under 0,NE

and 0,FR, the rejection rates are boldfaced if they lie in the 95%-confidence interval of the nominal level, 0.05.

almost all records are positive, points toward a general temperature increment on the 1994–2013
span with respect to 1974–1993; (iii) some of the visible temperature increments in the lower right
panel of Figure 1, such as in April–May and October–November, are identified with the horizontal
bands spanning the same periods on the right plot of Figure 2, for which there are almost no
negative values of 𝛽. We remark that the possible spatial dependence of the data was not taken
into account in the analysis.

One may wonder whether 𝛽 (Figure 2) is associated with a simpler FLMFR. The answer
appears to be negative, as the following attempted simplifications evidence: (i) 0 ∶ 𝛽 = 0 was
rejected by the KMSZ, PSS, LZS, and PCvM tests with null p-values; (ii) 0 ∶ 𝛽 = b̂, where b̂
stands for the average value of the 𝛽 surface, was rejected by the PCvM test with null p-value;
(iii) 0 ∶ 𝛽(s, t) = �{s=t}, the stationary-temperature hypothesis, was rejected by the PCvM test
with p-value= 10−4; (iv) 0 ∶ 𝛽(s, t) = ∼ 𝛽(s, t), where ∼ 𝛽 is constructed by averaging along
the periodic diagonals of 𝛽, was rejected by the PCvM test with null p-value. Interestingly,
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T A B L E 10 Scenario S3

FPCR FPCR-L1S (�̂�1SE) FPCR-L1S (�̂�CV)
n 50 100 250 50 100 250 50 100 250

0,NE 0.042 0.047 0.046 0.045 0.043 0.037 0.003 0.008 0.006

0,FR 0.082 0.235 0.957 0.044 0.055 0.057 0.009 0.029 0.125

1
1,NLQ 0.346 0.963 1.000 0.047 0.106 0.398 0.024 0.160 0.411

2
1,NLQ 0.471 0.988 1.000 0.054 0.129 0.597 0.039 0.203 0.572

3
1,NLQ 0.967 1.000 1.000 0.170 0.571 1.000 0.250 0.575 1.000

1
1,NLT 0.359 0.963 1.000 0.047 0.107 0.399 0.025 0.160 0.406

2
1,NLT 0.576 0.997 1.000 0.062 0.145 0.710 0.070 0.230 0.683

3
1,NLT 0.978 1.000 1.000 0.118 0.443 1.000 0.200 0.445 1.000

Note: Empirical rejection rates for the PCvM test, based on FPCR and FPCR-L1S, for n= 50, 100, 250. Under 0,NE

and 0,FR, the rejection rates are boldfaced if they lie in the 95%-confidence interval of the nominal level, 0.05.

F I G U R E 1 From left to right: samples of  and  , and sample means of  and  , indicating an increment
of the average temperatures in the period 1994–2013 with respect to 1974–1983 [Color figure can be viewed at
wileyonlinelibrary.com]

the third analysis is congruent with the outcome of the projected ANOVA (Cuesta-Albertos &
Febrero-Bande, 2010) which, when ran using fda.usc’s implementation with 30 projections,
rejected the equality of the mean group curves with null p-value. As a conclusion, this data appli-
cation not only reveals that there are no evidences against the FLMFR in the studied data, but also
provides yet another evidence, within a short-term and a localized region, of a significant climate
change. Analogous results were obtained presmoothing with a local linear estimator featuring a
cross-validated bandwidth.

6 CONCLUSIONS

We have developed a GoF test for assessing the composite null hypothesis of the FLMFR. Our
statistic: (i) is based on a characterization of the null hypothesis in terms of finite-dimensional
directions; (ii) can be regarded as a weighted quadratic norm of the coefficients of the residuals
in a truncated basis of H2; (iii) neatly extends a previous proposal for the FLMSR. Furthermore,

http://wileyonlinelibrary.com
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F I G U R E 2 FPCR-L1S
estimator 𝛽 for AEMET
temperatures data set. Note how
𝛽 reflects the smoothness of the
data, inherited by the FPC
[Color figure can be viewed at
wileyonlinelibrary.com]

together with a novel estimator for the FLMFR and the use of several convenient computational
procedures, we can achieve an expedient bootstrap calibration of the test statistic. Empirical
results show that, in the studied scenarios, the test calibrates adequately the composite null
hypothesis and detects a variety of linear and nonlinear alternatives. In addition, it is competitive
against previous proposals for testing the significance of the functional predictor.

As noted, the PCvM statistic only depends on the functional residuals. Hence, the formulated
test could be extended to alternative (possibly nonlinear) regression models, provided that reliable
estimators exist for them. Evident extensions are the testing of the FLMFR in the presence of sev-
eral functional covariates and the testing of the functional linear model with functional response
and scalar predictor.
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APPENDIX . PROOFS
Proof of Lemma 1. We proceed by proving equivalences by pairs. First of all, the equivalence of i
and ii can be derived straightforwardly by the definition of m() = E[| = ] under 0. The
equivalence of ii and iii follows by applying lemma 2.1(A) in Patilea and Sánchez-Sellero (2020)
pointwisely to each point t of (t) ∶= ( − ⟨⟨ , 𝛽⟩⟩)(t). The implication iii ⇒ iv is trivial from
the linearity of the inner product and the conditional expectation. On the other hand, the con-
verse implication follows by taking 𝛾 in the orthonormal basis of H2, {Φk}∞k=1. Then, (t) =∑∞

k=1 zkΦk(t) a.s. with E[zk|⟨ , 𝛾⟩H1
= u] = 0 for all k≥ 1 and a.e. u ∈ R, from where iv follows.

Finally, the equivalence between iv and v arises due to the equivalence between the (real-valued
and real-conditioned) conditional expectation and the integrated regression function (see, page
615 in Stute (1997)).

Proof of Lemma 2. By applying pointwisely lemma 2.1(A) in Patilea and Sánchez-Sellero (2020),
iii is equivalent to iii′, which replaces “∀𝛾 ∈ SH1

” by “∀𝛾 ∈ S
p−1
H1,{Ψj}∞j=1

and for all p≥ 1.” As

in the proof of Lemma 1, iii′ ⇒ iv′ trivially, and the converse follows by similar arguments. The
equivalence between iv′ and v′ is also analogous.

Proof of Lemma 3. Let x ∶= x∕||x|| ∈ Sq−1 and y ∶= y∕||y|| ∈ Sq−1 for x≠ 0 and y≠ 0 (otherwise
the result is trivial). Consider then the tangent-normal decomposition 𝝎 = tx + (1 − t2)1∕2Bx𝝃 (as
given, e.g., in lemma 2 in García-Portugués, Crujeiras, and González-Manteiga (2013)), where
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t ∈ [− 1, 1], 𝝃 ∈ Sq−2, and Bx is a q× (q− 1) semiorthogonal matrix such that B′
xBx = Iq−1 and

BxB′
x = Iq − xx′. Then, the integral can be rewritten as

||x||||y||∫
Sq−1

(x′
𝝎)(y′

𝝎) d𝝎 = ||x||||y||∫
Sq−2 ∫

1

−1
t(ty′x + (1 − t2)1∕2Bx𝝃)(1 − t2)(q−3)∕2 dt d𝝃

= ||x||||y||x′y∫
Sq−2

d𝝃 × ∫
1

−1
t2(1 − t2)(q−3)∕2 dt,

where symmetry simplifies the first integral. The result follows from ∫
Sq−2 d𝝃 = 2𝜋(q−1)∕2∕Γ((q −

1)∕2) and ∫ 1
−1 t2(1 − t2)(q−3)∕2 dt =

√
𝜋Γ((q − 1)∕2)∕(2Γ(q∕2 + 1)).

Proof of Lemma 4. Assume n≥ 2, as if n= 1 trivially A• = 2𝜋p∕2∕Γ(p∕2) > 0. From the cases
described in (16), and since the coefficients {xi,p}n

i=1 are pairwise distinct, it follows that

A• =
𝜋p∕2−1

Γ(p∕2)

{ n∑
r=1

Ar + 𝜋In

}
, (Ar)ij ∶=

{
𝜋, if i = r or j = r,

(15), otherwise,

where er stands for the rth canonical vector in Rn. The matrices Ar have a clear block struc-
ture. For example, if r =n, then Ar = (Br, 𝜋1n−1;𝜋1′n−1, 𝜋), where 1n− 1 is a vector of n− 1 ones
and (Br)k𝓁 ∶= A(∡)

oko𝓁r, with indexes oi ∶= i + �{i≤r}, i= 1, … , n− 1. Analogous block expressions
follow for r < n, yet more cumbersome since Br is split into four blocks. In any case, for any

r = 1, … , n, given v ∈ Rn, then v′Arv = v′
−rBrv−r + 𝜋

[
v2

r + 2vr
∑n

j = 1, j ≠ r vj

]
and, as a conse-

quence, v′ {∑n
r=1 Ar + 𝜋In

}
v =

∑n
r=1 v′

−rBrv−r + 2𝜋
(∑n

j=1 vj

)2
. Therefore, the sum is positive for

any v≠ 0 if the matrices Br, r = 1, … , n, are positive semidefinite.
Set yk ∶= (xk,p − xr,p)∕||xk,p − xr,p|| ∈ Sp−1 for k= 1, … , n, k≠ r, and p≥ 1. From (15), (Br)k𝓁 =

𝜓(cos−1(y′
ky𝓁)), with 𝜓(𝜃) = 𝜋 − 𝜃, 𝜃 ∈ [0, 𝜋]. Define �̃�(𝜃) ∶= 𝜓(𝜃)∕(2𝜋) − 1∕4. If p≥ 2, from the

asymptotic distribution of the Ajne’s statistic (Prentice, 1978, page 172),

�̃�(𝜃) =
∞∑

k=1

4(k − 1) + p
p − 2

b2
2k−1C(p−2)∕2

2k−1 (cos 𝜃), b2k−1 =
2p−2Γ(p∕2)Γ(k − 1 + p∕2)(2k − 2)!

(−1)k−1𝜋(k − 1)!(2k + p − 3)!
,

where C𝛼

k denotes the Gegenbauer polynomial of index 𝛼 and order k (when p= 2, we use implic-
itly that lim𝛼→0C𝛼

k (cos 𝜃)∕𝛼 = (2∕k) cos(k𝜃)). Therefore, the Gegenbauer coefficients of �̃� are
nonnegative (positive if odd; null if even) and, due to the properties of the Gegenbauer polynomi-
als, so do are the coefficients of 𝜓 . Then, the characterization by Schoenberg (1942) entails that 𝜓
is definite positive. This implies that, for any collection of points z1, … , zm ∈ Sp−1, for any m≥ 2
and p≥ 2, the matrix (𝜓(cos−1(z′kz𝓁)))k,𝓁=1,… ,m is positive semidefinite. When p= 1, recall that
yk ∈{− 1,+ 1} and (Br)k𝓁 = 𝜋𝛿yky𝓁 , so Br can be rearranged as (𝜋1n−×n− , 0n−×n+ ; 0n+×n− , 𝜋1n+×n+),
where n± denotes the number of yk’s equal to ±1. Trivially, (Br)k𝓁 is rank 2 with nonnull
eigenvalues n+𝜋 and n−𝜋. As a consequence, Br is positive semidefinite for all r = 1, … , n, n≥ 2,
p≥ 1.


