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Abstract

The Functional Linear Model with Functional Response (FLMFR) is one of the most funda-
mental models to assess the relation between two functional random variables. In this paper, we
propose a novel goodness-of-fit test for the FLMFR against a general, unspecified, alternative.
The test statistic is formulated in terms of a Cramér–von Mises norm over a doubly-projected em-
pirical process which, using geometrical arguments, yields an easy-to-compute weighted quadratic
norm. A resampling procedure calibrates the test through a wild bootstrap on the residuals and
the use of convenient computational procedures. As a sideways contribution, and since the
statistic requires a reliable estimator of the FLMFR, we discuss and compare several regularized
estimators, providing a new one specifically convenient for our test. The finite sample behavior
of the test is illustrated via a simulation study. Also, the new proposal is compared with previous
significance tests. Two novel real datasets illustrate the application of the new test.

Keywords: Bootstrap; Cramér–von Mises statistic; Functional data; Regularization.

1 Introduction

The increasing availability of data for continuous processes has boosted the field of Functional
Data Analysis (FDA) in the last decades as a powerful tool to take advantage of the complexity
and rich structure of this kind of data, difficult to manage for many traditional statistical tech-
niques given their intrinsically infinite dimensionality. Some of the main monographs in FDA
are Ramsay and Silverman (2005), Ferraty and Vieu (2006), Horváth and Kokoszka (2012), and
Hsing and Eubank (2015).

Regression models with functional covariates and/or responses emerged as natural generalizations of
multivariate ones. A specific instance arises when assessing the relation between two functional ran-
dom variables X and Y via a general regression model Y = m(X )+E , where E is a functional random
error. The main difference with the multivariate case is that here m is an operator between func-
tion spaces, typically of a Hilbertian nature, therefore generalizing the usual Euclidean-Euclidean
regression mapping. Nonparametric estimation of m was addressed by Ferraty et al. (2011) and
Lian (2011), who investigated the rates of convergence of kernel and k-nearest neighbors regression
estimates, respectively. Moreover, Ferraty et al. (2012) studied the nonparametric estimation of m
by considering data-driven bases and consistent bootstrap approaches.

However, much of the existing regression literature is concerned with (infinite-dimensional) para-
metric modeling, where the operator m is assumed to belong to a given parametric family. As
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an early precedent, the simplest and best-known paradigm is the Functional Linear Model with
Scalar Response (FLMSR), Y = mρ(X ) + ε, where ε is a real-valued error and mρ is a linear
functional depending on a function ρ. Within the FLMSR, the so-called Functional Principal Com-
ponents Regression (FPCR) was introduced by Cardot et al. (1999) as a parsimonious estimation
approach. Crambes et al. (2009) proposed a smoothing splines estimator, whereas Aguilera and
Aguilera-Morillo (2013) formulated penalized FPCR estimation techniques based on B-splines. Al-
ternatively, functional partial least squares regression was proposed in Preda and Saporta (2005).
Some authors have also studied the relation of a functional response and a scalar regressor, see, e.g.,
Chiou et al. (2003).

In contrast, the Functional Linear Model with Functional Response (FLMFR), Y = m(X ) + E ,
where m is a linear operator, has received considerably less attention. When a Hilbertian framework
is considered, m ≡ mβ is usually assumed to be a Hilbert–Schmidt operator between L2 spaces
admitting an integral representation in terms of a bivariate kernel β. Ramsay and Silverman (2005)
proposed to estimate β based on minimizing the residual sum of squared norms. Motivated by
signal transmission problems, Cuevas et al. (2002) provided an estimator considering a fixed and
triangular design. An estimator in terms of the Karhunen–Loève expansions of functional response
and regressor was discussed in Yao et al. (2005). Crambes and Mas (2013) provided asymptotic
results for prediction under the FLMFR through the Karhunen–Loève expansion of the functional
regressor, whereas Imaizumi and Kato (2018) derived minimax optimal rates. An estimation based
on functional canonical correlation analysis was suggested in He et al. (2010). The FLMFR when
both response and covariate are densities was analyzed in Park and Qian (2012).

Several authors have contributed to the Goodness-of-Fit (GoF) framework for regression models,
see González-Manteiga and Crujeiras (2013) for a comprehensive review. The first attempts, fol-
lowing the ideas of Bickel and Rosenblatt (1973) in scalar and multivariate contexts, were focused
on smoothing-based tests, see Härdle and Mammen (1993). Alternatively, upon the work of Durbin
(1973), and aimed at solving the sensitiveness of those approaches to the smoothing parameter, Stute
(1997) proposed a GoF test based on the integrated regression function. Extending this work to the
high-dimensional context, Escanciano (2006) proposed a GoF test, in terms of a residual marked em-
pirical process based on projections, designed to overcome the poor empirical power inherent to the
curse of dimensionality. Promoting these ideas to the FDA context, García-Portugués et al. (2014)
and Cuesta-Albertos et al. (2019) derived an easily computable GoF test for the FLMSR in terms
of projections. The former proposed a methodology based on the projected empirical estimator of
the integrated regression function, whereas the latter considered marked empirical process indexed
by a single randomly projected functional covariate, providing a more computationally efficient test.

In addition to the GoF proposals for the FLMSR discussed above, Delsol et al. (2011) formulated a
kernel-based test for model assumptions, whereas Bücher et al. (2011) introduced testing procedures
well-adapted for the time-variation of directional profiles. Generalized likelihood ratio tests were
suggested in McLean et al. (2015) to test the linearity of functional generalized additive models.
Staicu et al. (2015) tested the equality of multiple group mean functions for hierarchical functional
data. In the context of semi-functional partial linear model, where the scalar response is regressed
on multivariate and functional covariates, Aneiros-Pérez and Vieu (2013) tested the simple linear
null hypothesis. In the FLMSR setup, a comparative study has been recently provided by Yasemin-
Tekbudak et al. (2019), comparing GoF tests in Horváth and Reeder (2013), García-Portugués et al.
(2014), McLean et al. (2015), and Kong et al. (2016).

The extension of these GoF proposals to the FLMFR context is currently an open challenge. This
model is being applied to a wide range of fields, such as electricity market (Benatia et al., 2017), bi-
ology (He et al., 2010) or the study of lifetime patterns (Imaizumi and Kato, 2018), to cite but some,
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hence the practical relevance of developing a GoF test for it. Testing the lack of effect, which is ac-
tually a particular case of the FLMFR, has received considerable attention: Kokoszka et al. (2008)
proposed an FPC-based significance test within the FLMFR; Patilea et al. (2016b) introduced a
kernel-based significance test consistent to nonlinear alternatives; Lee et al. (2020) proposed a sig-
nificance test, within the FLMFR, using an extension to the functional setup of the correlation-based
metric adopted in Park et al. (2015). Related testing approaches within the FLMFR include those
of Chiou and Müller (2007), which addressed the development of a FPC-based residual diagnostic
tool, and Gabrys et al. (2010), that tested if functional residuals are independent and identically dis-
tributed (iid). Sharing the aim of the time-domain-based test in Gabrys et al. (2010), Zhang (2016)
has recently proposed a Cramér–von Mises test for the functional white noise, with applications to
assessing the uncorrelatedness of the residuals in FLMFR and functional autoregressive model fits,
but under a frequency-domain framework, in terms of the functional periodogram previously derived
in Panaretos and Tavakoli (2013). Empirical likelihood ratio tests were formulated by Wang et al.
(2018) for concurrent models. No proposals extending the generalized likelihood ratio test approach
seem to exist for the FLMFR. As a consequence, the development of GoF tests for the FLMFR,
against unspecified alternatives, is an area still substantially unexplored.

In this paper, we propose a GoF test for the FLMFR, that is, for testing the composite null hypothesis

H0 : m ∈ L =

{
mβ(X )(t) =

∫ b

a
X (s)β(s, t) ds : β ∈ L2 ([a, b]× [c, d])

}
.

Our methodology is based on characterizing H0 in terms of the integral regression operator arising
from a double projection, of the functional covariate and the response, in terms of finite-dimensional
functional directions. The deviation of the resulting empirical process from its expected zero mean
is measured by a Cramér–von Mises statistic that integrates on both functional directions and is
calibrated via an efficient wild bootstrap on the residuals. We show that our GoF test exhibits an
adequate behavior, in terms of size and power, for the composite hypothesis, under two common
scenarios: the no effects model and the FLMFR. Besides, since the test can be readily modified for
the simple hypothesis β ≡ 0, we compare our GoF test with the procedures from Kokoszka et al.
(2008) and Patilea et al. (2016b), obtaining competitive powers. As a by-product contribution, we
provide a convenient hybrid approach for the estimation of β based on LASSO (Tibshirani, 1996)
regularization and linearly-constrained least-squares. The companion R package goffda (García-
Portugués and Álvarez-Liébana, 2020) implements all the methods presented in the paper and allows
for replication of the real data applications.

The rest of this paper is organized as follows. Section 2 introduces the required background on
FDA and the FLMFR, addressing the estimation of the regression operator and providing a brief
comparative study between different estimation techniques. Section 3 is devoted to the theoretical,
computational, and resampling aspects of the new GoF test. A comprehensive simulation study
and a real data application are presented in Sections 4 and 5, respectively. Conclusions are drawn
in Section 6. Appendix A contains the proofs of the lemmas and the Supporting Information (SI)
provides another data application.

2 Functional data and the FLMFR

2.1 Functional bases

Given the functional bases {Ψj}∞j=1 and {Φk}∞k=1 in the separable Hilbert spaces H1 and H2, respec-
tively, any elements X ∈ H1 and Y ∈ H2 can be represented as X =

∑∞
j=1 xjΨj and Y =

∑∞
k=1 ykΦk,

where xj = 〈X ,Ψj〉H1 and yk = 〈Y,Φk〉H2 , for each j, k ≥ 1. Typical examples are the B-splines basis
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(non-orthogonal piece-wise polynomial bases) or the Fourier basis. Both bases are of a determinis-
tic nature and, despite their flexibility, usually require a larger number of elements to adequately
represent a functional sample {Xi}ni=1. A more parsimonious representation can be achieved by
considering data-driven orthogonal bases, being the most popular choice the (empirical) Functional
Principal Components (FPC) of {Xi}ni=1, {Ψ̂j}nj=1, the eigenfunctions of the sample covariance
operator.

To develop the test, we will consider a p-truncated basis {Ψj}pj=1 in H1, corresponding to the first p
elements of {Ψj}∞j=1. The projection of X on this truncated basis is denoted by X (p) =

∑p
j=1 xjΨj

and we set xp := (x1, . . . , xp). We will also require to integrate on the functional analogue of
the Euclidean (p − 1)-sphere Sp−1 = {x ∈ Rp : ‖x‖ = 1}, the (p − 1)-sphere of H1 on {Ψj}∞j=1

defined as Sp−1
H1,{Ψj}∞j=1

:= {f =
∑p

j=1 xjΨj ∈ H1 : ‖f‖H1
= 1}. The relationship between Sp−1 and

Sp−1
H1,{Ψj}∞j=1

follows easily (García-Portugués et al., 2014) considering the positive semi-definite matrix
Ψ = (〈Ψj ,Ψ`〉H1)j,`=1,...,p, whose Cholesky decomposition is Ψ = P′pPp. Then, the (p− 1)-ellipsoid
Sp−1

Ψ = {x ∈ Rp : x′Ψx = 1} is trivially isomorphic with Sp−1
H1,{Ψj}∞j=1

by f =
∑p

j=1 xjΨj ∈ Sp−1
H1,{Ψj}∞j=1

7→ xp ∈ Sp−1
Ψ . Considering also the linear mapping x ∈ Sp−1 7→ P−1

p x ∈ Sp−1
Ψ , the integration of a

functional operator T with respect to γ(p) ∈ Sp−1
H1,{Ψj}∞j=1

can be written as∫
Sp−1
H1,{Ψj}∞j=1

T
(
γ(p)

)
dγ(p) =

∫
Sp−1
Ψ

T
( p∑
j=1

gjΨj

)
dgp =

∫
Sp−1

|Pp|−1T
( p∑
j=1

(P−1
p gp)jΨj

)
dgp, (1)

where
(
P−1
p gp

)
j
denotes the j-th component of the vector P−1

p gp and gp is the vector of coefficients

of γ(p) in the p-truncated basis. If the basis is orthonormal, then Ψ and Pp are the identity
matrices of order p, denoted as Ip, and gp ∈ Sp−1 without any transformation. Clearly, an analogous
development can be established for Sq−1

H2,{Φk}∞k=1
by means of Φ = (〈Φk,Φ`〉H2)k,`=1,...,q where {Φk}qk=1

is a q-truncated basis in H2.

2.2 The FLMFR

We consider the context of functional regression with H2-valued functional response Y and H1-valued
functional covariate X :

Y = m(X ) + E , (2)

where the regression operator is defined as m(X) = E [Y|X = X ] and the H2-valued error is such that
E [E|X ] = 0. Within this setting, we assume that X and Y are already centered so there is no need
for an intercept term in (2). Particularly, we consider L2 spaces and assume, in what follows, that
X ∈ H1 = L2 ([a, b]) and Y ∈ H2 = L2 ([c, d]), unless otherwise explicitly mentioned.

In this context, the simplest parametric model is the FLMFR, in which the regression operator
m : H1 −→ H2 is usually assumed to be a Hilbert–Schmidt integral operator, i.e., m admits an
integral representation mβ given by a bivariate kernel β ∈ H1 ⊗H2 = L2([a, b]× [c, d]) as follows:

mβ(X )(t) =

∫ b

a
β(s, t)X (s) ds, t ∈ [c, d]. (3)

In particular, the Hilbert–Schmidt condition directly implies that m is a compact operator, that is,
β can be decomposed in terms of the tensor product of any pair of bases in H1 and H2, since such
tensor product constitutes a basis on the space of Hilbert–Schmidt operators. As a consequence,

β =

∞∑
j=1

∞∑
k=1

bjk(Ψj ⊗ Φk), bjk =
〈β,Ψj ⊗ Φk〉H1⊗H2

‖Ψj‖2H1
‖Φk‖2H2

, (4)
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with j, k ≥ 1. For convenience, we denote the linear integral operator in (3) by 〈〈·, ?〉〉, defined as
〈〈·, ?〉〉 : H1 × (H1 ⊗ H2) −→ H2, 〈〈X , β〉〉(t) := 〈X , β(·, t)〉H1 . Therefore, the FLMFR from (2)–(3)
can be succinctly denoted as

Y = 〈〈X , β〉〉+ E . (5)

Bearing in mind that X =
∑∞

j=1 xjΨj and Y =
∑∞

k=1 ykΦk, then

〈〈X , β〉〉 =

〈〈 ∞∑
j=1

xjΨj ,
∞∑
`=1

∞∑
k=1

b`k(Ψ` ⊗ Φk)

〉〉
=
∞∑
j=1

∞∑
`=1

∞∑
k=1

b`kxj〈Ψj ,Ψ`〉H1Φk, (6)

with 〈Ψj ,Ψ`〉H1 = δj`, j, ` ≥ 1, for orthonormal bases. From (6) and E =
∑∞

k=1 ekΦk,

yk =
∞∑
j=1

∞∑
`=1

b`kxj〈Ψj ,Ψ`〉H1 + ek, k ≥ 1.

This (infinite) linear model is usually approached by projecting the variables in the truncated bases
{Ψj}pj=1 and {Φk}qk=1 (Ramsay and Silverman, 2005, Chapter 16), obtaining the (p, q)-truncated
population version

yk =

p∑
j=1

p∑
`=1

b`kxj〈Ψj ,Ψ`〉H1 + ek, k = 1, . . . , q. (7)

Note that an equivalent way of expressing (7) is Y(q) =
〈〈
X (p), β(p,q)

〉〉
+ E(q), where β(p,q) is the

projection of (4) into {Ψj ⊗ Φk}p,qj,k=1.

Now, given an iid centered sample {(Xi,Yi)}ni=1 such that Yi = 〈〈Xi, β〉〉+ Ei, the sample version of
(7) is expressed in matrix form as

Yq = XpΨBp,q + Eq, (8)

where Yq and Eq are the n×q matrices with the coefficients of {Yi}ni=1 and {Ei}ni=1, respectively, on
{Φk}qk=1, Xp is the n× p matrix of coefficients of {Xi}ni=1 on {Ψj}pj=1, and Bp,q is the p× q matrix
of unknown coefficients on {Ψj ⊗ Φk}p,qj,k=1. Observe that these matrices are centered by columns
and hence the model does not have an intercept. Clearly, due to the form of (8), estimators for β
in (4) readily follow from the linear model theory. We discuss them next, focusing exclusively on
orthonormal bases. This can be done without loss of generality; just replace Xp by X̆p := XpΨ
subsequently for non-orthonormal bases.

2.3 Model estimation

FPCR considers in (8) the data-driven bases given by the (empirical) FPC {Ψ̂j}pj=1 and {Φ̂k}qk=1

of {Xi}ni=1 and {Yi}ni=1, respectively, where p, q ≤ n. The estimator of β is then defined as the
least-squares estimator of the (p, q)-truncated model given in (7) and (8):

B̂p,q = arg min
Bp,q

‖Yq −XpBp,q‖2 = arg min
β(p,q)

n∑
i=1

∥∥∥Y(q)
i −

〈〈
X (p)
i , β(p,q)

〉〉∥∥∥2
.

Clearly, least-squares estimation gives B̂p,q =
(
X′pXp

)−1
X′pYq, with (B̂p,q)jk = b̂jk, j = 1, . . . , p,

k = 1, . . . , q. The estimator of β(p,q) is then β̂(p,q) =
∑p

j=1

∑q
k=1 b̂jk(Ψ̂j ⊗ Φ̂k).
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The estimator β̂(p,q) critically depends on (p, q), hence an automatic data-driven selection of (p, q)
is of most practical interest. A possibility is to extend the predictive cross-validation criterion from
Preda and Saporta (2005) to the FLMFR context, at expenses of a likely high computational cost
(cross-validation on two indexes). Alternatives based on the generalized cross-validation procedure
(Cardot et al., 2003) or a stepwise model selection approach based on the BIC criterion could be
studied, but neither the degrees of freedom or the likelihood function are immediate to estimate in
the FLMFR setup. A feasible possibility, though not regression-driven, is to select p and q as the
minimum number of components associated with a certain proportion of Explained Variance (EVp

and EVq), e.g., such that EVp = EVq = 0.99. This simple rule provides an initial selection which
can be subsequently improved.

Regularization techniques provide an estimation alternative that, due to their flexibility and efficient
computational implementations (Friedman et al., 2010), have been remarkably popular in the last
decades. The so-called elastic-net regularization of Bp,q gives the estimator

B̂(λ)
p,q = arg min

Bp,q

{
1

2n

n∑
i=1

∥∥(Yq)i − (XpBp,q)i
∥∥2

+ λ

[
1− α

2
‖Bp,q‖2F + α

p∑
j=1

∥∥∥(Bp,q)j

∥∥∥
2

]}
,

where λ ≥ 0 is the penalty parameter, α ∈ [0, 1], ‖ · ‖F is the Frobenius norm, and (A)i stands for
the i-th row of the matrix A. If λ = 0, then we the usual FPCR follows. Cases α = 0 and α = 1
correspond to ridge (henceforth denoted as FPCR-L2) and LASSO (FPCR-L1) regression, respec-
tively. The former does a global penalization in all the entries of Bp,q, whereas the latter applies
a row-wise penalization that effectively zeroes full rows, hence removing predictors. Therefore, the
key advantage of the FPCR-L1 is that it enables variable selection: p and q are initially fixed but
only p̃ ≤ p components are selected. On the other hand, FPCR-L2 exhibits an important advan-
tage when employed within the bootstrap algorithm to be described in Section 3.3: the estimation
Ŷq = XpB̂

(λ)
p,q can be re-expressed as Ŷq = H(λ)Yq, where H(λ) = Xp

(
X′pXp + λIp

)−1
X′p is the

hat matrix for the FPCR-L2 estimator. The lack of an analogous result for the FPCR-L1 estimator
notably increases the bootstrapping cost. Finally, note that λ can be selected with reasonable effi-
ciency through leave-one-out cross-validation (λ̂CV), as implemented in Friedman et al. (2010).

As a way to exploit the advantages of both FPCR-L1 and FPCR-L2, we propose a hybrid approach,
termed FPCR-L1-selected (FPCR-L1S) estimator, which firstly implements FPCR-L1 for variable
selection, and then performs FPCR estimation with the predictors selected by FPCR-L1 (see Remark
7 on variable selection by FPCR-L1). Therefore, FPCR-L1S has a hat matrix that is very convenient
for the latter bootstrap algorithm:

H
(λ)
C = X̃p̃

(
X̃′p̃X̃p̃

)−1
X̃′p̃, (9)

where X̃p̃ is the matrix of the coefficients of the p̃ selected predictors (which can be non-consecutive
FPC). This variable selection is a crucial advantage, as clearly the number of FPC for representing
X and Y up to a certain EV might not correspond with the best selection of (p, q) for the estimation
of Bp,q. We denote the scores of the FPCR-L1S estimator as B̂

(λ),C
p̃,q .

2.4 Comparative study of estimators

A succinct simulation study is conducted for comparing the performance of the four estimators
previously described. We used the following common settings: the functional covariates {Xi}ni=1

are centered and valued in [0, 1], the functional errors {Ei}ni=1 are valued in [2, 3] (both intervals
were discretized in 101 equispaced grid points), the sample size is n = 100, and 1, 000 Monte Carlo
replicates were considered. The simulation scenarios are collected in Table 1 and have the following
descriptions:
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• CM. Based on the process used in Crambes and Mas (2013), where X (s) =
∑50

j=1 λjεjΨj(s),
εj ∼ N (0, 22), with λj = (π2(j − 1

2)2)−1 and Ψj(s) =
√

2 sin((j − 0.5)πs), for each j ≥ 1 and
s ∈ [0, 1].

• BM. Brownian motion with standard deviation equal to 0.15.

• IK. Based on the process used in Imaizumi and Kato (2018). Functional covariates are given
by X (s) =

∑50
j=1 j

−7/4UjΨj(s), Uj ∼ U(−
√

5,
√

5), with Ψ1(s) ≡ 1 and Ψj(s) =
√

2 cos(jπs),
for each j ≥ 1 and s ∈ [0, 1]. Functional errors are given by E(t) =

∑50
j=1 j

−4/5εjΨj(t), εj ∼
N (0, 1.52), for each j ≥ 1 and t ∈ [2, 3].

• GP. Gaussian process with covariance function Σ(s1, s2) = 62 exp(−|s1 − s2|/0.2).

• OU. Ornstein–Uhlenbeck process with unitary drift and stationary standard deviation equal
to 0.35.

Scenario Kernel β(s, t) X (s) E(t)

S1 (s− a)2 + (t− c)2 CM BM

S2 2 [sin(6π(s− a)) + cos(6π(t− c))] GP OU

S3 β(s, t) =
∑∞

j=1

∑∞
k=1 bj,kΦj(s)Ψk(t) with bjk = 0 if j, k ≤ 4, IK IK

bjk = 6(−1)j+k (j − 4)−12/5 (k − 4)−1/4 otherwise

Table 1: Summary of the simulated scenarios.

Table 2 shows the averaged errors
∥∥β − β̂(p,q)

∥∥
H1⊗H2

of all estimators for p = 2, 5, 10, 25, 50 and
q = 1, 5, 10, with λ set as λ̂CV. We summarize next the conclusions:

• There is a weak dependency on q: parameters (p, q) do not play a symmetric role (Ramsay and
Silverman, 2005). Nonetheless, the influence of q is more prevalent in S2 and S3, inasmuch as
an amount of EV has still to be captured.

• When p is excessively large, errors skyrocket for FPCR and FPCR-L2, in contrast with FPCR-
L1 and FPCR-L1S. This is clearly observed in S1 (low variability and a linear kernel), since
the model begins to become promptly overfitted (EVp=2 > 0.99 and EVq=1 = 0.98) and the
effective variable selection of FPCR-L1 and FPCR-L1S is clearly manifested ( ¯̃p/p < 0.05 as p
increases).

• S2 (high variability and an egg-carton-shape-like kernel) illustrates the situation in which the
functional samples are not properly represented with few FPC (EVp=10 < 0.95). Even though
errors are smaller than in S1 (overfitting is mitigated, ¯̃p/p ' 0.25 as p increases), FPCR-L1
(mainly) and FPCR-L1S provide more precise estimations. FPCR slightly outperforms the
rest of estimators for small values of (p, q).

• A sensible choice of (p, q) for representing the functional samples might not be so for estimating
β. This is illustrated in S3: even though X and Y are smoother than in S2, ¯̃p is not much
smaller, since the first components are not informative. The number of selected FPC for
FPCR-L1 and FPCR-L1S is drastically reduced for large values of (p, q) ( ¯̃p/p < 0.05, when
p = 50 and q = 10), since non-consecutive FPC are allowed to be selected, removing the noise
from estimating the first null components.

All in all, FPCR-L1 outperforms FPCR-L1S, yet both performances are markedly better than the
FPCR and FPCR-L2 ones. Because of this and the key computational advantage the explicit hat
matrix (9) delivers, we will adopt FPCR-L1S as our reference estimator.

7



Scenario S1 S2 S3

q (EVq) 1 (98%) 5 (> 99%) 10 (> 99%) 1 (92%) 5 (> 99%) 10 (> 99%) 1 (38%) 5 (86%) 10 (93%)

EVp > 99% 68.69% 96.66%

¯̃p 1.0 (0.13) 1.0 (0.13) 1.0 (0.13) 1.8 (0.40) 2.0 (0.14) 2.0 (0.14) 1.0 (0.00) 1.0 (0.00) 1.0 (0.00)

p = 2

FPCR 0.303 0.296 0.296 1.438 1.418 1.418 21.382 21.386 21.387
L1 0.216 0.216 0.216 1.438 1.425 1.425 21.385 21.385 21.385
L2 0.300 0.291 0.291 1.438 1.423 1.423 21.385 21.385 21.385
L1S 0.204 0.203 0.203 1.438 1.418 1.418 21.385 21.385 21.385

EVp > 99% 87.77% 98.33%

¯̃p 1.1 (0.27) 1.1 (0.28) 1.1 (0.28) 4.8 (0.47) 4.4 (0.70) 4.4 (0.70) 3.1 (1.40) 1.5 (0.83) 1.5 (0.81)

p = 5
FPCR 2.461 2.660 2.670 1.418 1.303 1.304 10.204 6.696 6.738
L1 0.239 0.242 0.243 1.418 1.326 1.326 10.299 9.182 9.256
L2 2.161 2.316 2.324 1.418 1.308 1.308 10.417 10.221 10.335
L1S 0.308 0.323 0.323 1.418 1.307 1.307 10.230 6.711 6.716

EVp > 99% 94.46% > 99%

¯̃p 1.1 (0.45) 1.1 (0.42) 1.1 (0.42) 8.1 (1.28) 8.9 (1.00) 8.8 (1.00) 5.1 (2.52) 1.9 (1.32) 1.9 (1.28)

p = 10

FPCR 15.297 16.411 16.461 1.416 0.504 0.507 9.643 14.313 15.342
L1 0.404 0.407 0.408 1.416 0.547 0.548 8.981 8.782 8.868
L2 13.354 14.194 14.236 1.416 0.503 0.506 9.348 12.468 12.912
L1S 1.193 1.185 1.186 1.416 0.507 0.509 9.175 6.960 6.978

EVp > 99% 98.37% > 99%

¯̃p 1.2 (0.69) 1.2 (0.67) 1.2 (0.67) 11.5 (3.22) 11.7 (3.02) 11.7 (3.01) 5.9 (3.75) 2.0 (1.80) 1.70 (0.45)

p = 25

FPCR 164.917 176.286 176.757 1.419 1.271 1.291 36.794 111.324 119.420
L1 2.006 2.004 1.986 1.416 0.622 0.622 10.358 10.383 10.290
L2 142.442 150.485 150.857 1.419 1.222 1.241 26.367 52.843 53.747
L1S 9.549 10.505 10.435 1.417 0.936 0.943 16.720 15.679 15.310

EVp > 99% 99% > 99%

¯̃p 1.5 (1.74) 1.4 (1.52) 1.4 (1.48) 13.2 (5.50) 13.6 (5.10) 13.6 (5.11) 6.8 (5.30) 2.2 (2.57) 2.2 (2.60)

p = 50

FPCR 1231.590 1313.864 1317.221 1.445 3.596 3.654 220.034 680.661 729.409
L1 19.933 17.903 17.703 1.418 0.856 0.852 20.103 20.621 19.626
L2 1045.237 1098.301 1100.604 1.444 3.456 3.510 135.310 212.072 203.919
L1S 92.410 92.469 91.647 1.429 2.097 2.105 60.360 73.110 68.900

Table 2: Averaged L2 estimation errors. The average number (sd in parentheses) of selected FPC with
FPCR-L1 and FPCR-L1S is denoted as ¯̃p. Boldfaces denote the errors that are not significantly larger than
the smallest (on each block), according to a 95%-confidence paired t-test.

3 A GoF test for the FLMFR

3.1 Derivation of the test statistic

Our aim is to verify whether the relation between the functional response and predictor can be
explained by the FLMFR in (6), that is, to test the composite null hypothesis

H0 : m ∈ L = {〈〈·, β〉〉 : β ∈ H1 ⊗H2}

against an unspecified alternative hypothesis H1 : P (m 6∈ L) > 0. Note that H0 is equivalent to
H0 : m(·) = 〈〈·, β〉〉, where the equality holds for some unknown β ∈ H1 ⊗H2.
The following lemmas give the characterization of H0 in terms of the one-dimensional projections of
the response and the predictor.

Lemma 1 (H0 characterization). Let X and Y be H1- and H2-valued random variables, respectively,
and β ∈ H1 ⊗H2. Then, the following statements are equivalent:

i. H0 holds, that is, m (X) = 〈〈X , β〉〉, ∀X ∈ H1.
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ii. E [Y − 〈〈X , β〉〉|X = X ] = 0, for almost every (a.e.) X ∈ H1.

iii. E [Y − 〈〈X , β〉〉|〈X , γX 〉H1 = u] = 0, for a.e. u ∈ R, ∀γX ∈ SH1.

iv. E [〈Y − 〈〈X , β〉〉, γY〉H2 |〈X , γX 〉H1 = u] = 0 almost surely (a.s.), for a.e. u ∈ R and ∀γX ∈
SH1 , γY ∈ SH2.

v. E
[
〈Y − 〈〈X , β〉〉, γY〉H21{〈X ,γX 〉H1

≤u}
]

= 0 a.s., for a.e. u ∈ R and ∀γX ∈ SH1 , γY ∈SH2.

Lemma 2 (H0 characterization on finite-dimensional directions). Within the setting of Lemma 1,
let {Ψj}∞j=1 and {Φk}∞k=1 be bases of H1 and H2, respectively. Then, the previous statement v is
equivalent to

v’. E
[
〈Y − 〈〈X , β〉〉, γY〉H21{〈X ,γX 〉H1

≤u}
]

= 0, for a.e. u ∈ R, ∀γX ∈ Sp−1
H1,{Ψj}∞j=1

, γY ∈ Sq−1
H2,{Φk}∞k=1

,
and for all p, q ≥ 1.

Hence, H0 holds if and only if v’ is satisfied. In addition, the former statements iii–iv are equivalent
to their iii’–iv’ analogues.

We use the characterization given by v in Lemma 1 to detect deviations from H0. We do so by
means of the empirical version (from an iid sample from (2)) of the doubly-projected integrated
regression function in v , that is, the residual marked empirical process

Rn (u, γX , γY) =
1√
n

n∑
i=1

〈Êi, γY〉H21{〈X ,γX 〉H1
≤u}, (10)

with u ∈ R, γX ∈ SH1 , γY ∈ SH2 and with residual marks 〈Êi, γY〉H2 = 〈Yi − 〈〈Xi, β̂〉〉, γY〉H2 and
jumps 〈Xi, γX 〉H1 , i = 1, . . . , n. To measure how close the empirical process (10) is to zero, and
following the ideas in Escanciano (2006) and García-Portugués et al. (2014), we consider a Cramér–
von Mises (CvM) norm on the space Π = SH2 × SH1 × R, yielding what we term the Projected
Cramér–von Mises (PCvM) statistic:

PCvMn =

∫
Π

[Rn (u, γX , γY)]2 Fn,γX (du)ωX (dγX )ωY(dγY), (11)

where Fn,γX is the empirical cumulative distribution function (ecdf) of {〈Xi, γX 〉H1}ni=1, and ωX and
ωY are suitable measures on SH1 and SH2 , respectively. As will be seen in Section 3.2, a key advantage
of the PCvM statistic with respect to other possible norms for (10), such as the Kolmogorov–Smirnov
norm, is that it admits an explicit representation.

The infinite dimension of SH1 and SH2 makes the functional in (11) unworkable. A way of circum-
venting this issue, motivated by Lemma 2, is to work with the finite-dimensional directions γ(p)

X and
γ

(q)
Y expressed on the bases {Ψj}pj=1 and {Φk}qk=1, respectively. For the sake of simplicity, we assume

that these bases are orthonormal from now on; see Remark 3 for non-orthogonal bases. Then, the
(p, q)-truncated version of (10) is

Rn,p,q

(
u, γ

(p)
X , γ

(q)
Y

)
=

1√
n

n∑
i=1

〈
Ê(q)
i , γ

(q)
Y
〉
H2
1{〈X (p)

i ,γ
(p)
X 〉H1

≤u
} =

1√
n

n∑
i=1

ê′i,qhq1{x′i,pgp≤u},

where u ∈ R, gp ∈ Sp−1, hq ∈ Sq−1 and ê′i,q represents the i-th row of the n × q matrix of residual

coefficients Êq, gp and hq are the coefficients of γ(p)
X and γ(q)

Y , respectively, and xi,p are the coefficients
of X (p)

i . Therefore, the (p, q)-truncated version of (11) is

PCvMn,p,q =

∫
Π(p,q)

[
Rn,p,q

(
u, γ

(p)
X , γ

(q)
Y

)]2
F
n,γ

(p)
X

(du)ωX (dγ
(p)
X )ωY(dγ

(q)
Y ), (12)

where Π(p,q) = Sq−1
H2,{Φk}∞k=1

× Sp−1
H1,{Ψj}∞j=1

× R.
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3.2 Computable form of the statistic

The statistic in (12) is now conveniently rewritten for its implementation. First, following Escanciano
(2006) and García-Portugués et al. (2014), let us assume that ωX and ωY in (12) represent uniform
measures on Sp−1

H1,{Ψj}∞j=1
and Sq−1

H2,{Φk}∞k=1
, respectively. Second, recall that since both bases are

orthonormal, from the transformation defined in (1), we have

PCvMn,p,q =

∫
Sq−1×Sp−1×R

[Rn,p,q (u,gp,hq)]
2 Fn,gp(du) dgp dhq, (13)

where Rn,p,q (u,gp,hq) ≡ Rn,p,q
(
u, γ

(p)
X , γ

(q)
Y

)
. Using some simple algebra, we obtain

PCvMn,p,q =

∫
Sq−1×Sp−1×R

1

n

[
n∑
i=1

ê′i,qhq1{x′i,pgp≤u}

]2

Fn,gp(du) dgp dhq

=
1

n

n∑
i=1

n∑
j=1

[ ∫
Sp−1×R

1{x′i,pgp≤u}1{x′j,pgp≤u} Fn,gp(du) dgp

] ∫
Sq−1

(ê′i,qhq)(ê
′
j,qhq) dhq

=
1

n2

n∑
i=1

[ n∑
j=1

n∑
r=1

∫
Sp−1

1{(xi,p−xr,p)′gp≤0, (xj,p−xr,p)′gp≤0} dgp

]
Eij

=
1

n2

n∑
i=1

n∑
j=1

n∑
r=1

[∫
Sijr

dgp

]
Eij , (14)

where we denote Sijr := {z ∈ Sp−1 : π/2 ≤ ] (xi,p − xr,p, z) ≤ 3π/2, π/2 ≤ ] (xj,p − xr,p, z) ≤
3π/2} (] (x,y) stands for the angle between x,y ∈ Rp) and Eij :=

∫
Sq−1(ê′i,qhq)(ê

′
j,qhq) dhq.

The terms
∫
Sijr

dgp =: Aijr are the same as the ones given in García-Portugués et al. (2014) and
they represent surface areas of particular spherical regions, that can either be the whole sphere Sp−1

(xi,p = xj,p = xr,p), a hemisphere of Sp−1 (if either xi,p = xj,p, xj,p = xr,p or xi,p = xr,p), or a
spherical wedge with solid angle

π − cos−1

(
(xi,p − xr,p)

′(xj,p − xr,p)

‖xi,p − xr,p‖ · ‖xj,p − xr,p‖

)
. (15)

Therefore, since the surface area of Sp−1 is equal to 2πp/2/Γ (p/2), being Γ (·) the Gamma function,
from Escanciano (2006) it follows that

Aijr = A
(])
ijr

πp/2−1

Γ(p/2)
, A

(])
ijr :=


2π, if xi,p = xj,p = xr,p,
π, if xi,p 6= xj,p and xi,p = xr,p or xj,p = xr,p,
(15), otherwise.

(16)

The term Eij can be dealt using the next auxiliary lemma regarding integration on the Euclidean
sphere, yielding Eij = 2πq/2/ (qΓ (q/2)) ê′i,qêj,q, for each i, j = 1, . . . , n.

Lemma 3. For any vectors x,y ∈ Rq,
∫
Sq−1(x′ω)(y′ω) dω = 2πq/2/ (qΓ (q/2)) x′y.

Substituting these terms into (14), we get an easily computable form of the statistic:

PCvMn,p,q =
1

n2

n∑
i=1

n∑
j=1

n∑
r=1

Aijr
2πq/2

qΓ(q/2)
ê′i,qêj,q =

1

n2

2πp/2+q/2−1

qΓ(p/2)Γ(q/2)
Tr
[
Ê′qA•Êq

]
, (17)

where Tr(·) denotes the trace operator and the elements of the symmetric matrix A• are defined as
(A•)ij :=

∑n
r=1Aijr, for i, j = 1, . . . , n.
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Remark 1 (Generalization of the GoF test statistic for the FLMSR). If H2 = R, identifiable with the
subspace of L2([c, d]) of constant functions, the FLMSR arises as a particular case of the FLMFR.
This is reflected in the statistic (17) which, if q = 1, yields the PCvM statistic for the FLMSR given
in García-Portugués et al. (2014) as a particular case.

Remark 2 (Alternative interpretation of PCvMn,p,q). The statistic (17) can be written as

PCvMn,p,q =
1

n2

2πp/2+q/2−1

qΓ(p/2)Γ(q/2)

q∑
k=1

‖(ê1,k, . . . , ên,k)‖A• ,

where Ê(q)
i =

∑q
k=1 êi,kΦk, i = 1, . . . , n, and ‖v‖A• := (v′A•v)1/2 is a norm (see Lemma 4) in Rn

induced by the symmetric matrix A•. Therefore, the statistic is a sum, across the q dimensions of the
truncated response, of the A•-weighted norms of the coefficients of the functional errors on {Φk}qk=1.
If this basis is non-orthonormal, then a similar interpretation can be obtained (see Remark 3).

Observe that ‖ · ‖A• is trivially a semi-norm: since PCvMn,p,q is non-negative, then A• must be
positive semi-definite. That A• is actually a norm follows from the next lemma.

Lemma 4. Assume that the functional sample {Xi}ni=1 has pairwise distinct coefficients {xi,p}ni=1

on an arbitrary p-truncated basis {Ψj}pj=1 of H1. Then, for any sample size n ≥ 1, the n×n matrix
A• is positive definite.

Remark 3 (Statistic for general functional bases). The statistic in (13) can be expressed in terms
of non-orthogonal functional bases as follows:

|Pp| |Qq|PCvMn,p,q =

∫
Sq−1×Sp−1×R

[
Rn,p,q

(
u,P−1

p gp,Q
−1
q hq

)]2
Fn,P−1

p gp
(du) dgp dhq

=

∫
Sq−1×Sp−1×R

1

n

[
n∑
i=1

ê′i,qQ
′
qhq1{x′i,pP′pgp≤u}

]2

Fn,P−1
p gp

(du) dgp dhq,

where Φ = Q′qQq is the Cholesky decomposition of Φ and the second equality stems from 〈X (p)
i , γ

(p)
X 〉H1

= x′i,pΨgp and 〈Ê(q)
i , γ

(q)
Y 〉H2 = ê′i,qΦhq. Then, following the developments preceding (17), it can be

shown that

PCvMn,p,q =
1

n2

2πp/2+q/2−1

|Pp| |Qq| qΓ(p/2)Γ(q/2)
Tr
[
(ÊqQq)

′A•(ÊqQq)
]
, (18)

where A• is based on the coefficients of X (p)
1 , . . . ,X (p)

n on the non-orthonormal basis {Ψj}pj=1.

Despite the general derivation of the PCvM statistic, we will focus on its application for the data-
driven FPC bases {Ψ̂j}nj=1 and {Φ̂k}nk=1.

3.3 Testing in practice and bootstrap resampling

We calibrate the null distribution of the statistic PCvMn,p,q in (18) by a wild bootstrap on the
residuals. This methodology is consistent in the finite dimensional case, as shown by Stute et al.
(1998), and well-adapted for heteroscedastic scenarios.

The bootstrap resampling is detailed within the next algorithm. It describes how to perform our GoF
test proposal in practice using FPCR-L1S, as this estimator combines the performance of FPCR-L1
and the computational expediency of FPCR. Adaptations to other estimators described in Section
2.3 are straightforward (but see Remark 4 below).
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Algorithm 1 (Testing in practice). Let {(Xi,Yi)}ni=1 be an iid sample. The GoF test for the FLMFR
proceeds as follows:

1. Center the sample and compute the FPC of {Xi}ni=1 and {Yi}ni=1.

2. Select p and q as the minimum number of FPC required for attaining a certain proportion of
EV (e.g., such that EVp = EVq = 0.99).

3. Compute the coefficients (scores) of {Xi}ni=1 and {Yi}ni=1 on the p- and q-truncated FPC bases,
resulting the matrices Xp and Yq.

4. Compute the FPCR-L1S estimator B̂
(λ),C
p̃,q of β as described in Section 2.3. This automatically

selects a subset of p̃ out of p FPC coefficients, depending on λ.

5. Obtain the residuals êi,q = Yi,q−Xi,pB̂
(λ),C
p̃,q , i = 1, . . . , n, and compute with them the statistic

PCvMn,p̃,q in (17).

6. Perform the bootstrap resampling. For b = 1, . . . , B:

i. Simulate independent zero-mean and unit-variance random variables {V ∗bi }ni=1. For ex-
ample, sample V ∗b such that P

[
V ∗b = (1∓

√
5)/2

]
= (5±

√
5)/10.

ii. Set the bootstrap errors as e∗bi,q := êi,qV
∗b
i , i = 1, . . . , n.

iii. Set the uncentered bootstrapped responses Y∗b,ui,q := Xi,p̃B̂
(λ),C
p̃,q + e∗bi,q, and center them to

imitate the original FPC scores: Y∗bi,q := Y∗b,ui,q −Y∗b,uq , i = 1, . . . , n.

iv. From the bootstrap sample {(Xi,p̃,Y
∗b
i,q)}ni=1, compute the estimator B̂∗bp̃,q of B̂

(λ),C
p̃,q .

v. Obtain the bootstrap residuals ê∗bi,q = Y∗bi,q−Xi,p̃B̂
∗b
p̃,q, i = 1, . . . , n, and compute with them

the bootstrapped statistic PCvM∗bn,p̃,q from (17).

7. Estimate the p-value by Monte Carlo as usual by #{PCvMn,p̃,q ≤ PCvM∗bn,p̃,q}/B.

Remark 4 (Computational tricks). Since A• depends exclusively on the covariate sample, it only
needs to be computed once in the testing procedure. In addition, as the wild bootstrap only affects the
response, steps iv–v can be efficiently implemented using the hat matrix (9), avoiding costly refittings
on each bootstrap iteration. Indeed, Ê∗bq = Y∗bq − Ŷ∗bq =

(
Iq −H

(λ)
C

)
Y∗bq , Ŷ∗bq = Xp̃B̂

∗b
p̃,q. The same

comment holds for FPCR-L2 and FPCR by virtue of H(λ) (in that case, p̃ = p), although not for
FPCR-L1 due to its lack of an explicit hat matrix. The GoF test using FPCR-L1 thus requires B+1
LASSO fits.

Remark 5 (Scores versus functional resampling). The above wild bootstrap performs the resampling
on the scores of the residuals in the q-truncated FPC basis {Φ̂k}qk=1, as from step 4 onwards there
is no further mention to the functional nature of the sample. This view could be achieved with extra
notation, as the bootstrap errors in step ii can be written as

E(q)∗b
i :=

q∑
k=1

(ei,kV
∗b
i )Φ̂k, Ê(q)

i =

q∑
k=1

ei,kΦ̂k.

This exposes a subtle point: why not bootstrapping the functional residuals Êi = Yi − Ŷ(q)
i as E∗bi :=

ÊiV ∗bi ? This would allow to obtain truly functional bootstrap responses {Y∗bi }ni=1, yet at expenses of
the overhead of recomputing their FPC for each bootstrap replicate. In our experiments, this latter
approach did not provide a significant improvement on the calibration of the test over the scores
resampling, hence it was discarded in favor of the latter.
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Remark 6 (Selection of the penalty parameter). A possible data-driven selection for λ in step 4
is λ̂CV. However, we found by simulations that the so-called one standard error rule λ̂1SE (see,
e.g., Friedman et al. (2010)) improved the stability of the calibration of PCvMn,p̃,q under H0. This
is coherent with the folklore in smoothing-based GoF tests, where the optimal smoothing parame-
ter for estimating the regression function m is often not the most appropriate for conducting the
test; instead, an oversmoothed estimate of m (that biases the estimation in exchange for a variance
reduction, precisely as λ̂1SE does) is desirable for a better calibration of the statistic.

Remark 7 (FPCR-L1 variable selection). LASSO is a consistent variable selector if the predictors
are uncorrelated (Zhao and Yu, 2006). Hence, this result supports the adequateness for combining
FPCR (instead of using non-orthogonal bases) with LASSO variable-selection. It also supports ig-
noring in Algorithm 1 the bootstrapping of the variable selection uncertainty. Indeed, motivated by
a comment of one referee, we ran a small simulation study with a modified version of Algorithm 1
that incorporated in Step 6 a bootstrap variable selection using λ̂∗b1SE, obtaining very similar powers
to the analogs of Tables 8–10 for FPCR-L1S (λ̂1SE). Clearly, this modification increases the com-
putational requirements by orders of magnitude, which is impractical. In this simulation it was also
evidenced that variable selection based on λ̂CV seems to be inconsistent (which may be explained by
Shao (1993)’s result), while variable selection based on λ̂1SE seems to be behave consistently.

So far we have only discussed the GoF test for the FLMFR. However, simple adaptations allow to
test also the simple hypothesis H0 : m(·) = 〈〈·, β0〉〉, where β0 ∈ H1⊗H2 now is specified. Algorithm
1 can be straightforwardly adapted. First, replace step 4 by

4’. Compute p̃ as in step 4. Obtain B0
p̃,q = (b0ij)ij, the p̃× q matrix of β0 FPC coefficients.

Then, the bootstrap procedure is subsequently adjusted by simply ignoring the estimation steps,
that is, by replacing both B̂

(λ),C
p̃,q and B̂∗bp̃,q by B0

p̃,q.

Algorithm 1 and its variants (simple hypothesis; FPCR, FPCR-L2, and FPCR-L1 estimators; func-
tional residual resampling) are implemented in the companion R package goffda (García-Portugués
and Álvarez-Liébana, 2020). The critical parts of the test, such as the computation of the A•
matrix and the computation of the PCvM statistic (whose complexity is O

(
q(n3 − n2)/2

)
), are

implemented in C++ for the sake of efficiency.

4 Simulation study

The finite sample behaviour of the PCvM test is now illustrated via a comparative study with the
available significance tests (Section 4.1) and a simulation study for the composite hypothesis (Sec-
tion 4.2). We employed the scenarios already described in Table 1 and used the following common
settings: discretization of functional samples in 101 equispaced grid points along the domains, sam-
ple sizes n = 50, 100, 250, B = 1, 000, and 1, 000 Monte Carlo replicates. The PCvM test was run
using Algorithm 1 with EVp = EVq = 0.99.

The PCvM test was computed using both FPCR and FPCR-L1S, for showing how the overfitting
inherent to the former may affect the GoF test. In Section 4.2, FPCR-L1S is employed with both λ̂CV

and λ̂1SE for the purpose of illustrating the discussion in Remark 6. When testing for significance,
the conclusions reached with both penalty parameters were similar (since an estimator of β is not
required), so the results are only reported for λ̂1SE. The search for λ̂CV and λ̂1SE was done among
a sequence in [10−3, 102] and, if the minimizer of the objective function was found at its extremes,
the interval was expanded.
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4.1 Simple hypothesis

We compare in this section the significance tests by Kokoszka et al. (2008), Patilea et al. (2016b),
and Lee et al. (2020) (henceforth abbreviated as KMSZ, PSS, and LZS, respectively) with our PCvM
test for the no effects hypothesis

H0,NE : m(·) = 〈〈·, β0〉〉, β0 ≡ 0.

Both the KMSZ and PSS tests are based on the FPC of the predictor and response, that are truncated
such that EVp = EVq = 0.99. The KMSZ statistic is asymptotically χ2

pq distributed under H0,NE,
this being the distribution employed to calibrate the test. We ran the PSS test as implemented
in the fdapss (Patilea et al., 2016a) package, with a grid of 50 points for each one-dimensional
optimization and the bandwidth chosen as h = n−2/9, as suggested in Patilea et al. (2016b). A
bug in pss.test when p = 1 invalidated up to 8.5% of the Monte Carlo replicates, depending on
the scenario.

The LZS test estimates the functional martingale difference divergence that characterizes the con-
ditional mean dependence of X and Y. Hence, unlike the previous competitors and our approach,
it does not require from an FPC-based dimension reduction.

Notation Model (δ1, δ2, δ3)

H0,NE (no effects) Y(t) = E(t) None

Hh
1,FR (FLMFR) Y(t) = δh〈〈X , β〉〉+ E(t)

S1: (0.035, 0.08, 0.15)
S2: (0.01, 0.02, 0.03)
S3: (1, 1.3, 1.6)

Hh
1,C (FLCFR) Y(t) = δhβ̃j(t)X (t) + E(t), j = 1, 2, 3

S1: (0.025, 0.05, 0.15)
S2: (0.2, 0.6, 1)
S3: (0.01, 0.025, 0.05)

Hh
1,NLQ Y(t) = δh∆ (X ) (t) + E(t) S1: (0.025, 0.075, 0.15)

S2: (0.02, 0.04, 0.1)
S3: (0.2, 0.35, 0.55)

(non linear, quadratic) ∆ (X ) (t) = X 2
(
a+ (t− c) b−a

d−c

)
− 1

Hh
1,NLT Y(t) = δh∆ (X ) (t) + E(t)

(non linear, trigonometric) ∆ (X ) (t) = (sin(2πt)− cos(2πt)) ‖X‖2H1

Table 3: Summary of null and alternative hypotheses. Concurrent models are given by functions β̃1(t) =√
|sin(πt)− cos(πt)| (S1), β̃2(t) = log (t− a+ 0.5) (S2), and β̃3(t) = (t− 0.5)

3 (S3).

We assume here that H1 = H2 = L2 ([0, 1]). As reflected in Table 3, four kind of deviations from
H0,NE were generated: FLMFR, concurrent model (degenerated FLMFR, denoted as FLCFR), and
two nonlinear alternatives. The empirical rejection rates are given in Tables 4–6. They contain
only the results of the FPCR-based PCvM test since the FPCR-L1S version gave almost identical
rejection rates. Their analysis reveals the following insights:

• Regarding the calibration, the PCvM and LZS tests are the only without repeated miscali-
brations in any scenario: an over-rejection happens in S2 (H0,NE in Table 5) for the PSS test,
while the KMSZ test has difficulties in S2 and S3 (H0,NE in Tables 5–6).

• Concerning linear alternatives (FLMFR and concurrent), the LZS and KMSZ tests seem to
be the most powerful in S1, but the KMSZ test is notably the most powerful approach in S2
under the FLMFR alternative, an outcome somehow expected given the test nature. However,
the KMSZ test may fail under linear alternatives for sparse scenarios (H1,FR and H1,C in Table
6), providing empirical powers smaller than the nominal level. The behaviour is worse for the
LZS test, even under larger deviations from H0,NE. A possible explanation is that the noise
introduced with the null FPCs is not removed due to the lack of dimension reduction in the
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test. With respect to the comparison of the PCvM and PSS tests, the former is more powerful
than the latter under concurrent models (H1,C in Tables 4–6) in all scenarios and for all sample
sizes. In the case of FLMFR alternatives, this is also the case (unless for minor exceptions)
for S1 and S2 (H1,FR in Tables 4–5). In S3, the PSS test attains perfect empirical power, even
for n = 50 and the smallest deviation from the null hypothesis, manifesting a sharp difference
with respect to its behavior for S2 (almost blind for linear alternatives).

• Concerning nonlinear alternatives, as expected, KMSZ exhibits a poor performance detecting
them, except for S2 under H1,NLQ. The PSS, LZS, and PCvM tests correctly detect all the
nonlinear alternatives, the former being on overall more powerful in S3, the second one in S1
and S2.

KMSZ PSS LZS PCvM

n 50 100 250 50 100 250 50 100 250 50 100 250

H0,NE 0.053 0.055 0.057 0.049 0.047 0.048 0.048 0.044 0.049 0.042 0.034 0.050

H1
1,FR 0.083 0.178 0.495 0.067 0.074 0.160 0.339 0.567 0.943 0.087 0.128 0.282
H2

1,FR 0.384 0.836 1.000 0.177 0.316 0.718 0.916 0.998 1.000 0.292 0.516 0.923
H3

1,FR 0.955 1.000 1.000 0.551 0.885 0.997 1.000 1.000 1.000 0.718 0.973 1.000

H1
1,C 0.146 0.378 0.890 0.066 0.069 0.152 0.339 0.576 0.946 0.082 0.121 0.272
H2

1,C 0.527 0.936 1.000 0.113 0.195 0.472 0.822 0.989 1.000 0.171 0.340 0.778
H3

1,C 0.976 1.000 1.000 0.708 0.969 1.000 1.000 1.000 1.000 0.511 0.864 1.000

H1
1,NLQ 0.050 0.065 0.070 0.052 0.061 0.116 0.113 0.218 0.677 0.053 0.045 0.074
H2

1,NLQ 0.125 0.171 0.168 0.143 0.362 0.876 0.581 0.970 1.000 0.086 0.171 0.686
H3

1,NLQ 0.246 0.274 0.255 0.553 0.959 1.000 0.876 1.000 1.000 0.233 0.721 1.000

H1
1,NLT 0.100 0.135 0.129 0.050 0.050 0.059 0.093 0.133 0.502 0.047 0.039 0.064
H2

1,NLT 0.194 0.217 0.196 0.068 0.132 0.791 0.632 0.987 1.000 0.080 0.107 0.483
H3

1,NLT 0.217 0.237 0.216 0.446 0.949 1.000 0.932 1.000 1.000 0.245 0.743 1.000

Table 4: Scenario S1. Empirical rejection rates for the KMSZ, PSS, LZS, and PCvM tests for n = 50, 100, 250
and the deviations in Table 3. Under H0,NE, the rejection rates are boldfaced if they lie in the 95%-confidence
interval of the nominal level, 0.05. Under H1, boldfaces denote the empirical powers that are not significantly
smaller than the largest, for each deviation and sample size, according to a 95%-confidence paired t-test.

KMSZ PSS LZS PCvM

n 50 100 250 50 100 250 50 100 250 50 100 250

H0,NE 0.006 0.033 0.043 0.093 0.070 0.068 0.054 0.048 0.047 0.030 0.036 0.045

H1
1,FR 0.025 0.201 0.932 0.091 0.078 0.064 0.064 0.064 0.131 0.036 0.056 0.107
H2

1,FR 0.058 0.521 1.000 0.094 0.078 0.057 0.125 0.259 0.952 0.065 0.168 0.900
H3

1,FR 0.083 0.657 1.000 0.095 0.075 0.058 0.342 0.846 1.000 0.180 0.729 1.000

H1
1,C 0.023 0.112 0.567 0.087 0.085 0.059 0.868 0.999 1.000 0.032 0.056 0.104
H2

1,C 0.120 0.874 1.000 0.082 0.092 0.073 1.000 1.000 1.000 0.059 0.176 0.655
H3

1,C 0.955 1.000 1.000 0.093 0.070 0.070 1.000 1.000 1.000 0.381 0.898 1.000

H1
1,NLQ 0.050 0.174 0.305 0.080 0.072 0.156 0.102 0.167 0.626 0.043 0.082 0.282
H2

1,NLQ 0.083 0.337 0.552 0.077 0.196 0.894 0.225 0.648 1.000 0.060 0.227 0.975
H3

1,NLQ 0.084 0.420 0.689 0.250 0.983 1.000 0.502 0.989 1.000 0.086 0.532 1.000

H1
1,NLT 0.007 0.039 0.041 0.074 0.083 0.047 0.098 0.145 0.486 0.039 0.067 0.190
H2

1,NLT 0.010 0.044 0.046 0.067 0.131 0.767 0.253 0.655 1.000 0.069 0.244 0.961
H3

1,NLT 0.010 0.042 0.067 0.385 0.998 1.000 0.625 0.997 1.000 0.180 0.758 1.000

Table 5: Scenario S2. The description of Table 4 applies.
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KMSZ PSS LZS PCvM

n 50 100 250 50 100 250 50 100 250 50 100 250

H0,NE 0.006 0.036 0.026 0.046 0.071 0.052 0.054 0.049 0.040 0.047 0.041 0.037

H1
1,FR 0.010 0.041 0.052 1.000 1.000 1.000 0.058 0.073 0.107 0.055 0.108 0.398
H2

1,FR 0.014 0.040 0.056 1.000 1.000 1.000 0.063 0.079 0.134 0.062 0.119 0.582
H3

1,FR 0.027 0.044 0.058 1.000 1.000 1.000 0.057 0.076 0.135 0.067 0.136 0.675

H1
1,C 0.007 0.037 0.047 0.057 0.099 0.110 0.054 0.049 0.040 0.069 0.120 0.217
H2

1,C 0.008 0.057 0.185 0.141 0.293 0.589 0.054 0.049 0.040 0.252 0.503 0.891
H3

1,C 0.020 0.234 0.870 0.459 0.781 0.998 0.055 0.049 0.040 0.756 0.979 1.000

H1
1,NLQ 0.004 0.027 0.031 0.061 0.132 0.374 0.083 0.100 0.261 0.059 0.080 0.197
H2

1,NLQ 0.006 0.030 0.033 0.120 0.408 0.956 0.139 0.296 0.897 0.096 0.200 0.824
H3

1,NLQ 0.007 0.035 0.036 0.349 0.903 1.000 0.309 0.785 1.000 0.201 0.627 1.000

H1
1,NLT 0.005 0.028 0.034 0.054 0.082 0.178 0.073 0.082 0.199 0.052 0.070 0.156
H2

1,NLT 0.005 0.028 0.033 0.077 0.252 0.986 0.131 0.253 0.940 0.082 0.177 0.816
H3

1,NLT 0.008 0.032 0.030 0.345 0.973 1.000 0.344 0.873 1.000 0.207 0.700 1.000

Table 6: Scenario S3. The description of Table 4 applies.

We report some illustrative average running times of the four tests when n = 100 and B = 1, 000.
We do so only for S3, whose running times for all the tests are approximately between S1 and S2,
and under H0,NE and H3

1,FR (similar results were obtained under other alternatives). For the KMSZ
test (does not requires bootstrap calibration), the average running times (in seconds) were 0.0086s
(H0,NE) and 0.0085s (H3

1,FR). For the PSS and LZS tests, 24.6s and 17.5s, and 0.5s and 0.4s, re-
spectively. For the PCvM test (employs the same estimator as PSS), 0.5s and 0.2s. The comparison
was done in a core with 1.8 GHz.

As a conclusion, in the considered scenarios, the PCvM test properly calibrates H0,NE, is competitive
against the competing tests for all the alternatives (eventually being the most powerful in certain of
them), and matches or improves the omnibus LZS and PSS tests in computational expediency.

4.2 Composite hypothesis

We consider now H1 = L2 ([0, 1]) and H2 = L2 ([2, 3]) and two different null (linear) hypotheses:
no effects model and FLMFR. The same two nonlinear deviations from the linearity, weighted by
different intensity parameters, are again considered as alternatives. Table 7 summarizes all the
hypothesis tested. The conclusions from the results collected in Tables 8–10 are the following:

• As argued in Remark 6, for the PCvM test based in FPCR-L1S, λ̂1SE provides better calibration
of the null hypothesis than λ̂CV. The latter statistic encounters serious difficulties to be
calibrated, specially in S2–S3 (Tables 9–10) and under H0,NE.

• The PCvM test based on FPCR over-rejects under irregular/sparse scenarios like S2 and S3
(H0,NE andH0,FR in Table 9; H0,FR in Table 10). In the case of S2, this phenomena likely arises
from the overfitting (already discussed in Section 2.4) associated with the FPCR estimator. For
S3, the first scores for estimating β are null coefficients, and therefore, the information coming
from the FPC (incorrectly) suggests that H0,FR is related to a null surface (i.e., FPC suggest
that H0,NE holds) and so rejection of H0,FR happens. This issue was the main motivation for
developing FPCR-L1S and use it as a flexible estimator of β within the PCvM test.

• With respect to the power, the referred over-rejection of the FPCR-based PCvM test unfairly
provides greater empirical powers to this test with respect to FPCR-L1S based tests. Con-
cerning the use of λ̂CV, only marginal advantages are provided by λ̂CV in specific situations.
Finally, as expected, empirical powers tends to one as n and the deviation index h increase.
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Notation Model (δ1, δ2, δ3)

H0,NE (no effects) Y(t) = E(t) None
H0,FR (FLMFR) Y(t) = 1

2
〈〈X , β〉〉+ E(t)

Hh
1,NLQ (non linear,

quadratic)
Y(t) = 〈〈X , β〉〉+ δh∆ (X ) (t) + E(t)

∆ (X ) (t) =
(
X 2(a+ (t− c) b−a

d−c
)− 1

) S1: (0.02, 0.04, 0.1)
S2: (0.01, 0.02, 0.03)
S3: (0.02, 0.15, 0.5)

Hh
1,NLT (non linear,
trigonometric)

Y(t) = 〈〈X , β〉〉+ δh∆ (X ) (t) + E(t)

∆ (X ) (t) = (sin(2πt)− cos(2πt)) ‖X‖2H1

S1: (0.03, 0.05, 0.1)
S2: (0.035, 0.045, 0.055)
S3: (0.025, 0.2, 0.45)

Table 7: Summary of null and alternative hypotheses, for S1–S3.

FPCR FPCR-L1S (λ̂1SE) FPCR-L1S (λ̂CV)

n 50 100 250 50 100 250 50 100 250

H0,NE 0.041 0.042 0.049 0.043 0.031 0.050 0.010 0.014 0.013
H0,FR 0.042 0.043 0.050 0.028 0.046 0.045 0.030 0.037 0.042

H1
1,NLQ 0.063 0.091 0.177 0.045 0.092 0.179 0.046 0.080 0.166
H2

1,NLQ 0.142 0.271 0.626 0.122 0.254 0.620 0.115 0.244 0.605
H3

1,NLQ 0.596 0.929 1.000 0.566 0.917 1.000 0.568 0.919 1.000

H1
1,NLT 0.048 0.057 0.115 0.035 0.059 0.120 0.037 0.050 0.106
H2

1,NLT 0.087 0.166 0.642 0.068 0.155 0.623 0.068 0.141 0.608
H3

1,NLT 0.555 0.953 1.000 0.496 0.943 1.000 0.505 0.941 1.000

Table 8: Scenario S1. Empirical rejection rates for the PCvM test, based on FPCR and FPCR-L1S, for
n = 50, 100, 250. Under H0,NE and H0,FR, the rejection rates are boldfaced if they lie in the 95%-confidence
interval of the nominal level, 0.05.

FPCR FPCR-L1S (λ̂1SE) FPCR-L1S (λ̂CV)

n 50 100 250 50 100 250 50 100 250

H0,NE 1.000 0.949 0.364 0.026 0.036 0.043 0.014 0.020 0.014
H0,FR 0.997 0.876 0.308 0.091 0.047 0.037 0.298 0.109 0.047

H1
1,NLQ 0.978 0.825 0.648 0.101 0.125 0.380 0.351 0.250 0.390
H2

1,NLQ 0.993 0.962 0.990 0.235 0.463 0.929 0.504 0.593 0.934
H3

1,NLQ 0.999 1.000 1.000 0.585 0.910 1.000 0.844 0.969 1.000

H1
1,NLT 0.979 0.772 0.390 0.120 0.214 0.313 0.438 0.277 0.238
H2

1,NLT 0.996 0.970 0.991 0.650 0.891 0.985 0.772 0.899 0.985
H3

1,NLT 1.000 1.000 1.000 0.910 0.975 1.000 0.967 0.995 1.000

Table 9: Scenario S2. The description of Table 8 applies.

As before, we report some illustrative average timings for S3 under the same conditions. For the
PCvM-FPCR test, the timings were 0.8s (H0,FR) and 0.8s (H1,NLQ). The PCvM-FPCR-L1S (λ̂1SE)
test took 13.1s and 11.9s, and the λ̂CV variant, 11.5s and 8.8s.

As a conclusion, the obtained empirical results evidence that the PCvM test based on FPCR-L1S
with λ selected by λ̂1SE is a well-calibrated, flexible, and computationally efficient test that is
consistent against a broad class of alternatives to the FLMFR.
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FPCR FPCR-L1S (λ̂1SE) FPCR-L1S (λ̂CV)

n 50 100 250 50 100 250 50 100 250

H0,NE 0.042 0.047 0.046 0.045 0.043 0.037 0.003 0.008 0.006
H0,FR 0.082 0.235 0.957 0.044 0.055 0.057 0.009 0.029 0.125

H1
1,NLQ 0.346 0.963 1.000 0.047 0.106 0.398 0.024 0.160 0.411
H2

1,NLQ 0.471 0.988 1.000 0.054 0.129 0.597 0.039 0.203 0.572
H3

1,NLQ 0.967 1.000 1.000 0.170 0.571 1.000 0.250 0.575 1.000

H1
1,NLT 0.359 0.963 1.000 0.047 0.107 0.399 0.025 0.160 0.406
H2

1,NLT 0.576 0.997 1.000 0.062 0.145 0.710 0.070 0.230 0.683
H3

1,NLT 0.978 1.000 1.000 0.118 0.443 1.000 0.200 0.445 1.000

Table 10: Scenario S3. The description of Table 8 applies.

5 Real data application

We apply our GoF test to a real dataset with functional predictor and response (see Figure 1),
openly accessible as the object aemet_temp from the goffda package. Another application is given
in the SI for the dataset considered in Benatia et al. (2017). Along both applications, we used
B = 10, 000 bootstrap replicates to calibrate all the bootstrap-based tests and the PCvM test was
run using Algorithm 1 with FPCR-L1S, EVp = EVq = 0.99, and λ̂1SE. For both applications, the
same qualitative results were obtained with FPCR or FPCR-L2.
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AEMET temperature (1994−2013)
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Figure 1: From left to right: samples of Y and X , and sample means of X and Y, indicating an increment
of the average temperatures in the period 1994–2013 with respect to 1974–1983.

The “AEMET temperatures dataset” was constructed from the raw daily temperatures, along the
span 1974–2013, of n = 73 weather stations from the Meteorological State Agency of Spain (AEMET).
We considered a partition of this dataset in two 20-year periods, 1974–1993 and 1994–2013, and
computed the daily average temperature in each period. The aim of this partition is to explain the
temperatures in the latter period (Y) from the ones in the former (X ). Therefore, the response and
predictor are valued in H1 = H2 = L2([0, 365]). The functional observations are recorded in 365
equispaced grid points in the interval [0.5, 364.5] and are significantly rougher than in the previous
application since no presmoothing is applied. The selected stations are the same as in the aemet
dataset of the fda.usc package (Febrero-Bande and Oviedo de la Fuente, 2012) and were selected
over a larger set of stations due to their consistent records and permanent locations over the 40-
years period.

The PCvM test based on the data-driven p̃ = 4 and q = 3 yielded p-value = 0.2538 when testing the
GoF of the FLMFR. Hence, the sample shows no significant evidences against the FLMFR for any
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sensible significance level. In addition, β̂ in Figure 2 (right) reveals several interesting insights: (i)
the FLMFR mainly focuses on capturing positive correlation (positive values of β̂; marked in red)
within a ±90-days band (in dashed lines) about a given time of the year, effectively corresponding
to half a year; (ii) the predominance of positive values, together with the fact that almost all records
are positive, points towards a general temperature increment on the 1994–2013 span with respect
to 1974–1993; (iii) some of the visible temperature increments in the lower right panel of Figure
1, such as in Apr–May and Oct–Nov, are identified with the horizontal bands spanning the same
periods on the right plot of Figure 2, for which there are almost no negative values of β̂. We remark
that the possible spatial dependence of the data was not taken into account in the analysis.

Figure 2: FPCR-L1S estimator β̂ for the AEMET temperatures dataset. Note how β̂ reflects the smoothness
of the data, inherited by the FPC.

One may wonder whether β̂ (Figure 2) is associated to a simpler FLMFR. The answer appears to
be negative, as the following attempted simplifications evidence: (i) H0 : β = 0 was rejected by the
KMSZ, PSS, LZS, and PCvM tests with null p-values; (ii) H0 : β = b̂, where b̂ stands for the average
value of the β̂ surface, was rejected by the PCvM test with null p-value; (iii) H0 : β(s, t) = 1{s=t},
the stationary-temperature hypothesis, was rejected by the PCvM test with p-value = 10−4; (iv)
H0 : β(s, t) =

˜̂
β(s, t), where ˜̂

β is constructed by averaging along the periodic diagonals of β̂, was
rejected by the PCvM test with null p-value. Interestingly, the third analysis is congruent with
the outcome of the projected ANOVA (Cuesta-Albertos and Febrero-Bande, 2010) which, when
ran using fda.usc’s implementation with 30 projections, rejected the equality of the mean group
curves with null p-value. As a conclusion, this data application not only reveals that there are no
evidences against the FLMFR in the studied data, but also provides yet another evidence, within a
short-term and a localized region, of a significant climate change. Analogous results were obtained
presmoothing with a local linear estimator featuring a cross-validated bandwidth.

6 Conclusions

We have developed a GoF test for assessing the composite null hypothesis of the FLMFR. Our statis-
tic: (i) is based on a characterization of the null hypothesis in terms of finite-dimensional directions;
(ii) can be regarded as a weighted quadratic norm of the coefficients of the residuals in a truncated
basis of H2; (iii) neatly extends a previous proposal for the FLMSR. Furthermore, together with
a novel estimator for the FLMFR and the use of several convenient computational procedures, we
can achieve an expedient bootstrap calibration of the test statistic. Empirical results show that,
in the studied scenarios, the test calibrates adequately the composite null hypothesis and detects a
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variety of linear and nonlinear alternatives. In addition, it is competitive against previous proposals
for testing the significance of the functional predictor.

As noted, the PCvM statistic only depends on the functional residuals. Hence, the formulated
test could be extended to alternative (possibly non-linear) regression models, provided that reliable
estimators exist for them. Evident extensions are the testing of the FLMFR in the presence of
several functional covariates and the testing of the functional linear model with functional response
and scalar predictor.

Supporting information

An extra real data application is provided in the supporting information.
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A Proofs

Proof of Lemma 1. We proceed by proving equivalences by pairs. First of all, the equivalence of
i and ii can be derived straightforwardly by the definition of m(X) = E[Y|X = X ] under H0.
The equivalence of ii and iii follows by applying Lemma 2.1(A) in Patilea and Sánchez-Sellero
(2020) pointwisely to each point t of Z(t) := (Y − 〈〈X , β〉〉)(t). The implication iii =⇒ iv is
trivial from the linearity of the inner product and the conditional expectation. On the other hand,
the converse implication follows by taking γY in the orthonormal basis of H2, {Φk}∞k=1. Then,
Z(t) =

∑∞
k=1 zkΦk(t) a.s. with E[zk|〈X , γX 〉H1 = u] = 0 for all k ≥ 1 and a.e. u ∈ R, from where

iv follows. Finally, the equivalence between iv and v arises due to the equivalence between the
(real-valued and real-conditioned) conditional expectation and the integrated regression function
(see, e.g., page 615 in Stute (1997)).

Proof of Lemma 2. By applying pointwisely Lemma 2.1(A) in Patilea and Sánchez-Sellero (2020),
iii is equivalent to iii’, which replaces “∀γX ∈ SH1” by “∀γX ∈ Sp−1

H1,{Ψj}∞j=1
and for all p ≥ 1”. As in

the proof of Lemma 1, iii’ =⇒ iv’ trivially, and the converse follows by similar arguments. The
equivalence between iv’ and v’ is also analogous.

Proof of Lemma 3. Let x̄ := x/‖x‖ ∈ Sq−1 and ȳ := y/‖y‖ ∈ Sq−1 for x 6= 0 and y 6= 0 (otherwise
the result is trivial). Consider then the tangent-normal decomposition ω = tx̄ + (1− t2)1/2Bx̄ξ (as
given, e.g., in Lemma 2 in García-Portugués et al. (2013)), where t ∈ [−1, 1], ξ ∈ Sq−2, and Bx̄ is a
q× (q−1) semi-orthogonal matrix such that B′x̄Bx̄ = Iq−1 and Bx̄B′x̄ = Iq− x̄x̄′. Then, the integral
can be rewritten as

‖x‖‖y‖
∫
Sq−1

(x̄′ω)(ȳ′ω) dω = ‖x‖‖y‖
∫
Sq−2

∫ 1

−1
t
(
tȳ′x̄ + (1− t2)1/2Bx̄ξ

)
(1− t2)(q−3)/2 dt dξ
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= ‖x‖‖y‖x̄′ȳ
∫
Sq−2

dξ ×
∫ 1

−1
t2(1− t2)(q−3)/2 dt,

where symmetry simplifies the first integral. The result follows from
∫
Sq−2 dξ = 2π(q−1)/2/Γ ((q − 1)/2)

and
∫ 1
−1 t

2(1− t2)(q−3)/2 dt =
√
πΓ ((q − 1)/2) /(2Γ (q/2 + 1)).

Proof of Lemma 4. Assume n ≥ 2, as if n = 1 trivially A• = 2πp/2/Γ(p/2) > 0. From the cases
described in (16), and since the coefficients {xi,p}ni=1 are pairwise distinct, it follows that

A• =
πp/2−1

Γ(p/2)

{
n∑
r=1

Ar + πIn

}
, (Ar)ij :=

{
π, if i = r or j = r,
(15), otherwise,

where er stands for the r-th canonical vector in Rn. The matrices Ar have a clear block structure.
For example, if r = n, then Ar =

(
Br, π1n−1; π1′n−1, π

)
, where 1n−1 is a vector of n − 1 ones

and (Br)k` := A
(])
oko`r, with indexes oi := i + 1{i≤r}, i = 1, . . . , n − 1. Analogous block expressions

follow for r < n, yet more cumbersome since Br is split into four blocks. In any case, for any
r = 1, . . . , n, given v ∈ Rn, then v′Arv = v′−rBrv−r + π

[
v2
r + 2vr

∑n
j=1
j 6=r

vj

]
and, as a consequence,

v′ {
∑n

r=1 Ar + πIn}v =
∑n

r=1 v′−rBrv−r + 2π
(∑n

j=1 vj
)2
. Therefore, the sum is positive for any

v 6= 0 if the matrices Br, r = 1, . . . , n, are positive semi-definite.

Set yk := (xk,p − xr,p)/‖xk,p − xr,p‖ ∈ Sp−1 for k = 1, . . . , n, k 6= r, and p ≥ 1. From (15),
(Br)k` = ψ

(
cos−1(y′ky`)

)
, with ψ(θ) = π − θ, θ ∈ [0, π]. Define ψ̃(θ) := ψ(θ)/(2π)− 1/4. If p ≥ 2,

from the asymptotic distribution of the Ajne’s statistic (Prentice, 1978, page 172),

ψ̃(θ) =

∞∑
k=1

4(k − 1) + p

p− 2
b22k−1C

(p−2)/2
2k−1 (cos θ), b2k−1 =

2p−2Γ(p/2)Γ(k − 1 + p/2)(2k − 2)!

(−1)k−1π(k − 1)!(2k + p− 3)!
,

where Cαk denotes the Gegenbauer polynomial of index α and order k (when p = 2, we use implicitly
that limα→0C

α
k (cos θ)/α = (2/k) cos(kθ)). Therefore, the Gegenbauer coefficients of ψ̃ are non-

negative (positive if odd; null if even) and, due to the properties of the Gegenbauer polynomials,
so do are the coefficients of ψ. Then, the characterization by Schoenberg (1942) entails that ψ is
definite positive. This implies that, for any collection of points z1, . . . , zm ∈ Sp−1, for any m ≥ 2 and
p ≥ 2, the matrix

(
ψ
(
cos−1(z′kz`)

))
k,`=1,...,m

is positive semi-definite. When p = 1, recall that yk ∈
{−1,+1} and (Br)k` = πδyky` , so Br can be rearranged as

(
π1n−×n− , 0n−×n+ ; 0n+×n− , π1n+×n+

)
,

where n± denotes the number of yk’s equal to±1. Trivially, (Br)k` is rank 2 with non-null eigenvalues
n+π and n−π. As a consequence, Br is positive semi-definite for all r = 1, . . . , n, n ≥ 2, p ≥ 1.
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Supporting information for “A goodness-of-fit test for the
functional linear model with functional response”

Eduardo García-Portugués1,2, Javier Álvarez-Liébana3,
Gonzalo Álvarez-Pérez4,6, and Wenceslao González-Manteiga5

Abstract

This supporting information contains an extra real data application.

Keywords: Bootstrap; Cramér–von Mises statistic; Functional data; Regularization.

The “Ontario dataset”, constructed by the authors of Benatia et al. (2017), contains the hourly
electricity consumption (Y; measured in gigawatts) and smoothed temperature (X ; Celsius degrees)
in the province of Ontario (Canada). More precisely, it features a set of n = 368 daily curves on
2010–2014, where only summer months are taken into account, while weekends and holidays are dis-
carded (hence, the i-th datum is not necessarily consecutive in time to the (i+ 1)-th). The response
is valued in H2 = L2 ([0, 24]) and discretized in 25 equispaced grid points. Each temperature curve
is valued in H1 = L2 ([−24, 48]) and discretized in 73 equispaced grid points. The interval [−24, 48]
accounts for a 3-days window that is considered since the past and future temperatures of a given
day may influence the demand of energy on that day. Thus, the response is also regressed on 24 past
and future hours. The raw temperature records are smoothed by a local polynomial regression on a
weighted average of the temperatures of 41 Ontarian cities, producing the smoothed temperature,
finally shifted so its minimum is set to 0◦.

We check whether there exists a linear relation in the Ontario dataset. This is inspired by the
data application in Benatia et al. (2017), where a FLMFR featuring several seasonal dummies is
considered. Therefore, testing the GoF of the “canonical” FLMFR allows to evaluate if a seasonal-
free simplified model succeeds in describing the daily electricity consumption from the temperature
alone. Based on the data-driven selection of p̃ = 7 and q = 4, the PCvM test gave null p-value,
rejecting emphatically the FLMFR. When testing for significance, the KMSZ, PSS, LZS, and PCvM
tests clearly rejected with null p-values. Hence, a nontrivial and nonlinear functional relation be-
tween daily electricity consumption and the temperature is evidenced, and the seasonal-free version
of Benatia et al. (2017)’s model is shown to be inadequate for modeling such relation.

A referee and Associate Editor pointed out that the presence of temporal dependence in the data
violates the iid assumption of our GoF test. Indeed, the data construction inherited from Benatia
et al. (2017) employs 3-days overlapping windows that notably increases the serial dependency of
the functional records. In order to investigate if this dependency was the leading rejection cause of
the FLMFR, we have run our test retaining the 3-days windows but ensuring there are no overlaps
in the observations. That is, we have considered only the curves for day 1 (includes days 0, 1, 2),
day 4 (days 3, 4, 5), day 7 (days 6, 7, 8), etc., properly handling weekends and holidays. The results
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are the same as in the original application: the FLMFR is emphatically rejected (null p-values) for
the three possible subsettings of non-overlapping data and for different estimators. The no effect
hypothesis is also rejected with null p-values. From this analysis, we are confident that the rejections
with the original data are not primarily driven by temporal dependence (though still present in the
non-overlapping data, e.g., by annual periodicity), and that a reduction in the complexity of the
model in Benatia et al. (2017) through a seasonal-free version is not possible.
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Figure 3: FPCR-L1S estimator β̂ for the Ontario dataset. Note how β̂ reflects the smoothness of the data,
inherited by the FPC. The plot is coherent with Figure 11 in Benatia et al. (2017), yet ours is less centered
at the diagonal, probably since no seasonal dummies were considered for fitting the FLMFR.
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