Strongly consistent autoregressive predictors in abstract Banach spaces

Model must align true,
Goodness-of-fit shows the way
Functional beauty
Banach spaces
Consistency
Functional data
Functional time series

María Dolores Ruiz Medina, Javier Álvarez Liébana, «Strongly consistent autoregressive predictors in abstract Banach spaces», J. Multivariate Anal. 170, 186-201 (2019), doi: 10.1016/j.jmva.2018.08.001

Authors
Affiliations

Universidad de Granada

Universidad Complutense de Madrid

Published

March 2019

Doi

Materiales

Abstract

This work derives new results on strong consistent estimation and prediction for autoregressive processes of order 1 in a separable Banach space B. The consistency results are obtained for the component-wise estimator of the autocorrelation operator in the norm of the space of bounded linear operators on B. The strong consistency of the associated plug-in predictor then follows in the B-norm. A Gelfand triple is defined through the Hilbert space constructed in Kuelbs’ lemma (Kuelbs, 1970). A Hilbert–Schmidt embedding introduces the Reproducing Kernel Hilbert space (RKHS), generated by the autocovariance operator, into the Hilbert space conforming the Rigged Hilbert space structure. This paper extends the work of Bosq (2000) and Labbas and Mourid (2002).

Código R y datos

El código no fue documentado no está libremente disponible, solo bajo petición

Cita BibTeX

@article{RuizMedinaAlvarezLiebana19,
  author = {M. D. Ruiz-Medina and J. Álvarez-Liébana},
  title = {Strongly consistent autoregressive predictors in abstract Banach spaces},
  journal = {J. Multivariate Anal.},
  volume = {170},
  pages = {186-201},
  keywords = {Banach spaces, continuous embeddings, functional plug-in predictors, strongly consistent estimators},
  doi = {10.1016/j.jmva.2018.08.001}
  url = {https://www.sciencedirect.com/science/article/pii/S0047259X17307248#sec6},
  year = {2019}
}